The order of the Hopf bundle on projective Stiefel manifolds

Parameswaran Sankaran; Peter Zvengrowski

Fundamenta Mathematicae (1999)

  • Volume: 161, Issue: 1-2, page 225-233
  • ISSN: 0016-2736

How to cite

top

Sankaran, Parameswaran, and Zvengrowski, Peter. "The order of the Hopf bundle on projective Stiefel manifolds." Fundamenta Mathematicae 161.1-2 (1999): 225-233. <http://eudml.org/doc/212402>.

@article{Sankaran1999,
abstract = {},
author = {Sankaran, Parameswaran, Zvengrowski, Peter},
journal = {Fundamenta Mathematicae},
keywords = {Stiefel manifold},
language = {eng},
number = {1-2},
pages = {225-233},
title = {The order of the Hopf bundle on projective Stiefel manifolds},
url = {http://eudml.org/doc/212402},
volume = {161},
year = {1999},
}

TY - JOUR
AU - Sankaran, Parameswaran
AU - Zvengrowski, Peter
TI - The order of the Hopf bundle on projective Stiefel manifolds
JO - Fundamenta Mathematicae
PY - 1999
VL - 161
IS - 1-2
SP - 225
EP - 233
AB -
LA - eng
KW - Stiefel manifold
UR - http://eudml.org/doc/212402
ER -

References

top
  1. [1] Adams, J. F., Vector fields on spheres, Ann. of Math. 75 (1962), 603-632. Zbl0112.38102
  2. [2] Adams, J. F., Lectures on Lie Groups, Univ. Chicago Press, Midway reprint, 1982. Zbl0206.31604
  3. [3] Antoniano, E., Gitler, S., Ucci, J., and Zvengrowski, P., On the K-theory and parallelizability of projective Stiefel manifolds, Bol. Soc. Mat. Mexicana 31 (1986), 29-46. Zbl0665.57017
  4. [4] Atiyah, M. F., and Hirzebruch, F., Vector bundles and homogeneous spaces, in: Proc. Sympos. Pure Math. 3, Amer. Math. Soc., 1961, 7-38. Zbl0108.17705
  5. [5] Barufatti, N., Obstructions to immersions of projective Stiefel manifolds, in: Contemp. Math. 161, Amer. Math. Soc., 1994, 281-287. Zbl0833.57015
  6. [6] Barufatti, N., and Hacon, D., K-theory of projective Stiefel manifolds, to appear. Zbl0945.55006
  7. [7] Gitler, S., and Handel, D., The projective Stiefel manifolds - I, Topology 7 (1968), 39-46. Zbl0166.19405
  8. [8] Hodgkin, L., The equivariant Künneth theorem in K-theory, in: Lecture Notes in Math. 496, Springer, 1969, 1-101. 
  9. [9] Husemoller, D., Fibre Bundles, 2nd ed., Grad. Texts in Math. 20, Springer, 1975. Zbl0307.55015
  10. [10] Korbaš, J., and Zvengrowski, P., On sectioning tangent bundles and other vector bundles, Rend. Circ. Mat. Palermo (2) Suppl. 39 (1996), 85-104. Zbl0856.58004
  11. [11] Lam, K. Y., A formula for the tangent bundle of flag manifolds and related manifolds, Trans. Amer. Math. Soc. 213 (1975), 305-314. Zbl0312.55020
  12. [12] Milnor, J., and Stasheff, J., Characteristic Classes, Ann. of Math. Stud. 76, Princeton Univ. Press, Princeton, 1974. Zbl0298.57008
  13. [13] Pittie, H. V., Homogeneous vector bundles on homogeneous spaces, Topology 11 (1972), 199-204. Zbl0229.57017
  14. [14] Smith, L., Some remarks on projective Stiefel manifolds, immersions of projective spaces, and spheres, Proc. Amer. Math. Soc. 80 (1980), 663-669. Zbl0452.57013
  15. [15] P. Zvengrowski et al., The order of line bundles, preprint. Zbl1063.55001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.