A dichotomy theorem for mono-unary algebras

Su Gao

Fundamenta Mathematicae (2000)

  • Volume: 163, Issue: 1, page 25-37
  • ISSN: 0016-2736

Abstract

top
We study the isomorphism relation of invariant Borel classes of countable mono-unary algebras and prove a strong dichotomy theorem.

How to cite

top

Gao, Su. "A dichotomy theorem for mono-unary algebras." Fundamenta Mathematicae 163.1 (2000): 25-37. <http://eudml.org/doc/212427>.

@article{Gao2000,
abstract = {We study the isomorphism relation of invariant Borel classes of countable mono-unary algebras and prove a strong dichotomy theorem.},
author = {Gao, Su},
journal = {Fundamenta Mathematicae},
keywords = {descriptive set theory; countable model theory; admissible set theory; Vaught conjecture; Glimm-Effros dichotomy},
language = {eng},
number = {1},
pages = {25-37},
title = {A dichotomy theorem for mono-unary algebras},
url = {http://eudml.org/doc/212427},
volume = {163},
year = {2000},
}

TY - JOUR
AU - Gao, Su
TI - A dichotomy theorem for mono-unary algebras
JO - Fundamenta Mathematicae
PY - 2000
VL - 163
IS - 1
SP - 25
EP - 37
AB - We study the isomorphism relation of invariant Borel classes of countable mono-unary algebras and prove a strong dichotomy theorem.
LA - eng
KW - descriptive set theory; countable model theory; admissible set theory; Vaught conjecture; Glimm-Effros dichotomy
UR - http://eudml.org/doc/212427
ER -

References

top
  1. [Ba] J. Barwise, Admissible Sets and Structures: an Approach to Definability Theory, Perspectives in Math. Logic, Springer, Berlin, 1975. Zbl0316.02047
  2. [BK] H. Becker and A. S. Kechris, The Descriptive Set Theory of Polish Group Actions, London Math. Soc. Lecture Note Ser. 232, Cambridge Univ. Press, Cambridge, 1996. Zbl0949.54052
  3. [FS] H. Friedman and L. Stanley, A Borel reducibility theory for classes of countable structures, J. Symbolic Logic 54 (1989), 894-914. Zbl0692.03022
  4. [Ga] S. Gao, The isomorphism relation between countable models and definable equivalence relations, Ph.D. dissertation, UCLA, 1998. 
  5. [HKL] L. Harrington, A. S. Kechris and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), 903-928. Zbl0778.28011
  6. [HK] G. Hjorth and A. S. Kechris, Analytic equivalence relations and Ulm-type classifications, J. Symbolic Logic 60 (1995), 1273-1300. Zbl0847.03023
  7. [Ma] L. Marcus, The number of countable models of a theory of one unary function, Fund. Math. 58 (1980), 171-181. Zbl0363.02055
  8. [Sa] R. Sami, Polish group actions and the Vaught Conjecture, Trans. Amer. Math. Soc. 341 (1994), 335-353. Zbl0795.03069
  9. [St] J. R. Steel, On Vaught's Conjecture, in: Cabal Seminar 76-77, Lecture Notes in Math. 689, Springer, Berlin, 1978, 193-208. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.