Dimensionsgrad for locally connected Polish spaces

Vitaly Fedorchuk; Jan van Mill

Fundamenta Mathematicae (2000)

  • Volume: 163, Issue: 1, page 77-82
  • ISSN: 0016-2736

Abstract

top
It is shown that for every n ≥ 2 there exists an n-dimensional locally connected Polish space with Dimensionsgrad 1.

How to cite

top

Fedorchuk, Vitaly, and van Mill, Jan. "Dimensionsgrad for locally connected Polish spaces." Fundamenta Mathematicae 163.1 (2000): 77-82. <http://eudml.org/doc/212430>.

@article{Fedorchuk2000,
abstract = {It is shown that for every n ≥ 2 there exists an n-dimensional locally connected Polish space with Dimensionsgrad 1.},
author = {Fedorchuk, Vitaly, van Mill, Jan},
journal = {Fundamenta Mathematicae},
keywords = {Dimensionsgrad; dimension; locally connected space; partition; cut; Polish space},
language = {eng},
number = {1},
pages = {77-82},
title = {Dimensionsgrad for locally connected Polish spaces},
url = {http://eudml.org/doc/212430},
volume = {163},
year = {2000},
}

TY - JOUR
AU - Fedorchuk, Vitaly
AU - van Mill, Jan
TI - Dimensionsgrad for locally connected Polish spaces
JO - Fundamenta Mathematicae
PY - 2000
VL - 163
IS - 1
SP - 77
EP - 82
AB - It is shown that for every n ≥ 2 there exists an n-dimensional locally connected Polish space with Dimensionsgrad 1.
LA - eng
KW - Dimensionsgrad; dimension; locally connected space; partition; cut; Polish space
UR - http://eudml.org/doc/212430
ER -

References

top
  1. [1] P. S. Aleksandrov and B. A. Pasynkov, Introduction to Dimension Theory, Nauka, Moscow, 1973 (in Russian). 
  2. [2] L. E. J. Brouwer, Über den natürlichen Dimensionsbegriff, J. Reine Angew. Math. 142 (1913), 146-152. 
  3. [3] R. Engelking, General Topology, Heldermann, Berlin, 1989. 
  4. [4] R. Engelking, Theory of Dimensions: Finite and Infinite, Heldermann, Berlin, 1995. Zbl0872.54002
  5. [5] V. V. Fedorchuk, The fundamentals of dimension theory, in: Encyclopedia Math. Sci. 17, A. V. Arkhangel'skiĭ and L. S. Pontryagin (eds.), Springer, Berlin, 1990, 91-202. 
  6. [6] V. V. Fedorchuk, Urysohn's identity and dimension of manifolds, Uspekhi Mat. Nauk 53 (1998), no. 5, 73-114 (in Russian). 
  7. [7] V. V. Fedorchuk, M. Levin and E. V. Shchepin, On Brouwer's definition of dimension, ibid. 54 (1999), no. 2, 193-194 (in Russian). Zbl0995.54032
  8. [8] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, Mass., 1961. 
  9. [9] W. Hurewicz and H. Wallman, Dimension Theory, Van Nostrand, Princeton, N.J., 1941. Zbl67.1092.03
  10. [10] D. M. Johnson, The problem of the invariance of dimension in the growth of modern topology, Part II, Arch. Hist. Exact Sci. 25 (1981), 85-267. Zbl0532.55001
  11. [11] K. Kuratowski, Topology I, II, PWN - Polish Scientific Publishers and Academic Press, Warszawa and New York, 1966. 
  12. [12] S. Mazurkiewicz, O arytmetyzacji continuów, C. R. Varsovie 6 (1913), 305-311. 
  13. [13] J. van Mill, Infinite-Dimensional Topology: Prerequisites and Introduction, North-Holland, Amsterdam, 1989. Zbl0663.57001
  14. [14] R. Pol, A weakly infinite-dimensional compactum which is not countable-dimen- sional, Proc. Amer. Math. Soc. 82 (1981), 634-636. Zbl0469.54014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.