The measure algebra does not always embed
Fundamenta Mathematicae (2000)
- Volume: 163, Issue: 2, page 163-176
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topDow, Alan, and Hart, Klaas. "The measure algebra does not always embed." Fundamenta Mathematicae 163.2 (2000): 163-176. <http://eudml.org/doc/212436>.
@article{Dow2000,
abstract = {The Open Colouring Axiom implies that the measure algebra cannot be embedded into P(ℕ)/fin. We also discuss errors in previous results on the embeddability of the measure algebra.},
author = {Dow, Alan, Hart, Klaas},
journal = {Fundamenta Mathematicae},
keywords = {measure algebra; embedding; Open Colouring Axiom; P(ℕ)/fin; open colouring axiom; Boolean algebra; liftings of embeddings},
language = {eng},
number = {2},
pages = {163-176},
title = {The measure algebra does not always embed},
url = {http://eudml.org/doc/212436},
volume = {163},
year = {2000},
}
TY - JOUR
AU - Dow, Alan
AU - Hart, Klaas
TI - The measure algebra does not always embed
JO - Fundamenta Mathematicae
PY - 2000
VL - 163
IS - 2
SP - 163
EP - 176
AB - The Open Colouring Axiom implies that the measure algebra cannot be embedded into P(ℕ)/fin. We also discuss errors in previous results on the embeddability of the measure algebra.
LA - eng
KW - measure algebra; embedding; Open Colouring Axiom; P(ℕ)/fin; open colouring axiom; Boolean algebra; liftings of embeddings
UR - http://eudml.org/doc/212436
ER -
References
top- [1] M. Bekkali, Topics in Set Theory, Lecture Notes in Math. 1476, Springer, Berlin, 1991. Zbl0729.03022
- [2] M. G. Bell, Compact ccc nonseparable spaces of small weight, Topology Proc. 5 (1980), 11-25. Zbl0464.54017
- [3] M. Burke, Liftings for Lebesgue measure, in: Set Theory of the Reals, H. Judah (ed.), Israel Math. Conf. Proc. 6, Amer. Math. Soc., Providence, RI, 1993, 119-150. Zbl0840.03038
- [4] E. K. van Douwen, The integers and topology, in: Kunen and Vaughan [10], 111-167.
- [5] A. Dow and K. P. Hart, ω* has (almost) no continuous images, Israel J. Math. 109 (1999), 29-39. Zbl0931.54024
- [6] I. Farah, Analytic ideals and their quotients, Ph.D. thesis, Univ. of Toronto, 1997.
- [7] R. Frankiewicz, Some remarks on embeddings of Boolean algebras and topological spaces, II, Fund. Math. 126 (1985), 63-68. Zbl0579.03037
- [8] R. Frankiewicz and A. Gutek, Some remarks on embeddings of Boolean algebras and the topological spaces, I, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 471-476. Zbl0472.03044
- [9] W. Just, A weak version of AT from OCA, in: Set Theory of the Continuum, H. Judah, W. Just and H. Woodin (eds.), Math. Sci. Res. Inst. Publ. 26, Springer, Berlin, 1992, 281-291. Zbl0824.04003
- [10] K. Kunen and J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984. Zbl0546.00022
- [11] N. N. Luzin, On subset of the series of natural numbers, Izv. Akad. Nauk SSSR Ser. Mat. 11 (1947), 403-410 (in Russian).
- [12] J. van Mill, Weak P-points in Čech-Stone compactifications, Trans. Amer. Math. Soc. 273 (1982), 657-678. Zbl0498.54022
- [13] J. van Mill, An introduction to βω, in: Kunen and Vaughan [10], 503-568.
- [14] I. I. Parovičenko [I. I. Parovichenko], A universal bicompact of weight ℵ, Soviet Math. Dokl. 4 (1963), 592-595; Russian original: Dokl. Akad. Nauk SSSR 150 (1963), 36-39.
- [15] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, Berlin, 1982.
- [16] S. Shelah, Lifting problem for the measure algebra, Israel J. Math 45 (1983), 90-96. Zbl0549.03041
- [17] S. Shelah, Proper and Improper Forcing, Perspect. Math. Logic, Springer, Berlin, 1998. Zbl0889.03041
- [18] S. Todorčević, Partition Problems in Topology, Contemp. Math. 34, Amer. Math. Soc., Providence, RI, 1989. Zbl0659.54001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.