The measure algebra does not always embed

Alan Dow; Klaas Hart

Fundamenta Mathematicae (2000)

  • Volume: 163, Issue: 2, page 163-176
  • ISSN: 0016-2736

Abstract

top
The Open Colouring Axiom implies that the measure algebra cannot be embedded into P(ℕ)/fin. We also discuss errors in previous results on the embeddability of the measure algebra.

How to cite

top

Dow, Alan, and Hart, Klaas. "The measure algebra does not always embed." Fundamenta Mathematicae 163.2 (2000): 163-176. <http://eudml.org/doc/212436>.

@article{Dow2000,
abstract = {The Open Colouring Axiom implies that the measure algebra cannot be embedded into P(ℕ)/fin. We also discuss errors in previous results on the embeddability of the measure algebra.},
author = {Dow, Alan, Hart, Klaas},
journal = {Fundamenta Mathematicae},
keywords = {measure algebra; embedding; Open Colouring Axiom; P(ℕ)/fin; open colouring axiom; Boolean algebra; liftings of embeddings},
language = {eng},
number = {2},
pages = {163-176},
title = {The measure algebra does not always embed},
url = {http://eudml.org/doc/212436},
volume = {163},
year = {2000},
}

TY - JOUR
AU - Dow, Alan
AU - Hart, Klaas
TI - The measure algebra does not always embed
JO - Fundamenta Mathematicae
PY - 2000
VL - 163
IS - 2
SP - 163
EP - 176
AB - The Open Colouring Axiom implies that the measure algebra cannot be embedded into P(ℕ)/fin. We also discuss errors in previous results on the embeddability of the measure algebra.
LA - eng
KW - measure algebra; embedding; Open Colouring Axiom; P(ℕ)/fin; open colouring axiom; Boolean algebra; liftings of embeddings
UR - http://eudml.org/doc/212436
ER -

References

top
  1. [1] M. Bekkali, Topics in Set Theory, Lecture Notes in Math. 1476, Springer, Berlin, 1991. Zbl0729.03022
  2. [2] M. G. Bell, Compact ccc nonseparable spaces of small weight, Topology Proc. 5 (1980), 11-25. Zbl0464.54017
  3. [3] M. Burke, Liftings for Lebesgue measure, in: Set Theory of the Reals, H. Judah (ed.), Israel Math. Conf. Proc. 6, Amer. Math. Soc., Providence, RI, 1993, 119-150. Zbl0840.03038
  4. [4] E. K. van Douwen, The integers and topology, in: Kunen and Vaughan [10], 111-167. 
  5. [5] A. Dow and K. P. Hart, ω* has (almost) no continuous images, Israel J. Math. 109 (1999), 29-39. Zbl0931.54024
  6. [6] I. Farah, Analytic ideals and their quotients, Ph.D. thesis, Univ. of Toronto, 1997. 
  7. [7] R. Frankiewicz, Some remarks on embeddings of Boolean algebras and topological spaces, II, Fund. Math. 126 (1985), 63-68. Zbl0579.03037
  8. [8] R. Frankiewicz and A. Gutek, Some remarks on embeddings of Boolean algebras and the topological spaces, I, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 471-476. Zbl0472.03044
  9. [9] W. Just, A weak version of AT from OCA, in: Set Theory of the Continuum, H. Judah, W. Just and H. Woodin (eds.), Math. Sci. Res. Inst. Publ. 26, Springer, Berlin, 1992, 281-291. Zbl0824.04003
  10. [10] K. Kunen and J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984. Zbl0546.00022
  11. [11] N. N. Luzin, On subset of the series of natural numbers, Izv. Akad. Nauk SSSR Ser. Mat. 11 (1947), 403-410 (in Russian). 
  12. [12] J. van Mill, Weak P-points in Čech-Stone compactifications, Trans. Amer. Math. Soc. 273 (1982), 657-678. Zbl0498.54022
  13. [13] J. van Mill, An introduction to βω, in: Kunen and Vaughan [10], 503-568. 
  14. [14] I. I. Parovičenko [I. I. Parovichenko], A universal bicompact of weight ℵ, Soviet Math. Dokl. 4 (1963), 592-595; Russian original: Dokl. Akad. Nauk SSSR 150 (1963), 36-39. 
  15. [15] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, Berlin, 1982. 
  16. [16] S. Shelah, Lifting problem for the measure algebra, Israel J. Math 45 (1983), 90-96. Zbl0549.03041
  17. [17] S. Shelah, Proper and Improper Forcing, Perspect. Math. Logic, Springer, Berlin, 1998. Zbl0889.03041
  18. [18] S. Todorčević, Partition Problems in Topology, Contemp. Math. 34, Amer. Math. Soc., Providence, RI, 1989. Zbl0659.54001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.