Minimal periods of maps of rational exterior spaces
Fundamenta Mathematicae (2000)
- Volume: 163, Issue: 2, page 99-115
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topGraff, Grzegorz. "Minimal periods of maps of rational exterior spaces." Fundamenta Mathematicae 163.2 (2000): 99-115. <http://eudml.org/doc/212438>.
@article{Graff2000,
abstract = {The problem of description of the set Per(f) of all minimal periods of a self-map f:X → X is studied. If X is a rational exterior space (e.g. a compact Lie group) then there exists a description of the set of minimal periods analogous to that for a torus map given by Jiang and Llibre. Our approach is based on the Haibao formula for the Lefschetz number of a self-map of a rational exterior space.},
author = {Graff, Grzegorz},
journal = {Fundamenta Mathematicae},
keywords = {periodic points; minimal period; cohomology algebra; Lefschetz number; transversal map; periodic point},
language = {eng},
number = {2},
pages = {99-115},
title = {Minimal periods of maps of rational exterior spaces},
url = {http://eudml.org/doc/212438},
volume = {163},
year = {2000},
}
TY - JOUR
AU - Graff, Grzegorz
TI - Minimal periods of maps of rational exterior spaces
JO - Fundamenta Mathematicae
PY - 2000
VL - 163
IS - 2
SP - 99
EP - 115
AB - The problem of description of the set Per(f) of all minimal periods of a self-map f:X → X is studied. If X is a rational exterior space (e.g. a compact Lie group) then there exists a description of the set of minimal periods analogous to that for a torus map given by Jiang and Llibre. Our approach is based on the Haibao formula for the Lefschetz number of a self-map of a rational exterior space.
LA - eng
KW - periodic points; minimal period; cohomology algebra; Lefschetz number; transversal map; periodic point
UR - http://eudml.org/doc/212438
ER -
References
top- [BB] I. K. Babenko and C. A. Bogatyĭ, The behaviour of the index of periodic points under iterations of a mapping, Math. USSR-Izv. 38 (1992), 1-26.
- [BM] P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle, Acta Arith. 18 (1971), 355-369. Zbl0221.12003
- [CLN] J. Casasayas, J. Llibre and A. Nunes, Periodic orbits of transversal maps, Math. Proc. Cambridge Philos. Soc. 118 (1995), 161-181. Zbl0839.58044
- [Ch] K. Chandrasekharan, Introduction to Analytic Number Theory, Springer, Berlin, 1968. Zbl0169.37502
- [CMPY] S. N. Chow, J. Mallet-Paret and J. A. Yorke, A bifurcation invariant: Degenerate orbits treated as a cluster of simple orbits, in: Geometric Dynamics (Rio de Janeiro 1981), Lecture Notes in Math. 1007, Springer, 1983, 109-131.
- [D] A. Dold, Fixed point indices of iterated maps, Invent. Math. 74 (1985), 419-435. Zbl0583.55001
- [H] D. Haibao, The Lefschetz number of iterated maps, Topology Appl. 67 (1995), 71-79. Zbl0836.55001
- [JM] J. Jezierski and W. Marzantowicz, Minimal periods for nilmanifolds, Preprint No 67, Faculty of Mathematics and Informatics UAM, June 1997.
- [JL] B. Jiang and J. Llibre, Minimal sets of periods for torus maps, Discrete Contin. Dynam. Systems 4 (1998), 301-320. Zbl0965.37019
- [Mats] T. Matsuoka, The number of periodic points of smooth maps, Ergodic Theory Dynam. Systems 9 (1989), 153-163.
- [M] W. Marzantowicz, Determination of the periodic points of smooth mappings using Lefschetz numbers and their powers, Russian Math. Izv. 41 (1997), 80-89.
- [MP] W. Marzantowicz and P. Przygodzki, Finding periodic points of a map by use of a k-adic expansion, Discrete Contin. Dynam. Systems 5 (1999), 495-514. Zbl0965.37015
- [N] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, PWN, Warszawa, 1974. Zbl0276.12002
- [Sch] A. Schinzel, Primitive divisors of the expression in algebraic number fields, J. Reine Angew. Math. 268/269 (1974), 27-33. Zbl0287.12014
- [SS] M. Shub and P. Sullivan, A remark on the Lefschetz fixed point formula for differentiable maps, Topology 13 (1974), 189-191. Zbl0291.58014
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.