PCA sets and convexity
Fundamenta Mathematicae (2000)
- Volume: 163, Issue: 3, page 267-275
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topKaufman, R.. "PCA sets and convexity." Fundamenta Mathematicae 163.3 (2000): 267-275. <http://eudml.org/doc/212443>.
@article{Kaufman2000,
abstract = {Three sets occurring in functional analysis are shown to be of class PCA (also called $Σ^1_2$) and to be exactly of that class. The definition of each set is close to the usual objects of modern analysis, but some subtlety causes the sets to have a greater complexity than expected. Recent work in a similar direction is in [1, 2, 10, 11, 12].},
author = {Kaufman, R.},
journal = {Fundamenta Mathematicae},
keywords = {norm; Banach space; convex sets; integrals over extreme points; Borel set; PCA set; analytic set; co-analytic set},
language = {eng},
number = {3},
pages = {267-275},
title = {PCA sets and convexity},
url = {http://eudml.org/doc/212443},
volume = {163},
year = {2000},
}
TY - JOUR
AU - Kaufman, R.
TI - PCA sets and convexity
JO - Fundamenta Mathematicae
PY - 2000
VL - 163
IS - 3
SP - 267
EP - 275
AB - Three sets occurring in functional analysis are shown to be of class PCA (also called $Σ^1_2$) and to be exactly of that class. The definition of each set is close to the usual objects of modern analysis, but some subtlety causes the sets to have a greater complexity than expected. Recent work in a similar direction is in [1, 2, 10, 11, 12].
LA - eng
KW - norm; Banach space; convex sets; integrals over extreme points; Borel set; PCA set; analytic set; co-analytic set
UR - http://eudml.org/doc/212443
ER -
References
top- [1] H. Becker, Pointwise limits of sequences and sets, Fund. Math. 128 (1987), 159-170.
- [2] H. Becker, S. Kahane and A. Louveau, Some complete sets in harmonic analysis, Trans. Amer. Math. Soc. 339 (1993), 323-336. Zbl0799.04006
- [3] B. Bossard, Théorie descriptive des ensembles en géométrie des espaces de Banach, thèse, Univ. Paris VII, 199?.
- [4] B. Bossard, Co-analytic families of norms on a separable Banach space, Illinois J. Math. 40 (1996), 162-181.
- [5] B. Bossard, G. Godefroy and R. Kaufman, Hurewicz's theorems and renorming of Banach spaces, J. Funct. Anal. 140 (1996), 142-150. Zbl0872.46003
- [6] R. G. Bourgin, Geometric Aspects of Convex Sets with Radon-Nikodým Property, Lecture Notes in Math. 993, Springer, 1983. Zbl0512.46017
- [7] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math. 64, Longman Sci. Tech., 1993. Zbl0782.46019
- [8] G. A. Edgar, A noncompact Choquet theorem, Proc. Amer. Math. Soc. 49 (1975), 354-358. Zbl0273.46012
- [9] J. E. Jayne and C. A. Rogers, The extremal structure of convex sets, J. Funct. Anal. 26 (1977), 251-288. Zbl0411.46008
- [10] R. Kaufman, Co-analytic sets and extreme points, Bull. London Math. Soc. 19 (1987), 72-74. Zbl0601.54041
- [11] R. Kaufman, Topics on analytic sets, Fund. Math. 139 (1991), 217-229. Zbl0764.28002
- [12] R. Kaufman, Extreme points and descriptive sets, ibid. 143 (1993), 179-181. Zbl0832.54031
- [13] R. R. Phelps, Lectures on Choquet's Theorem, Van Nostrand Math. Stud. 7, Van Nostrand, Princeton, NJ, 1966. Zbl0135.36203
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.