Wildness in the product groups
Fundamenta Mathematicae (2000)
- Volume: 164, Issue: 1, page 1-33
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. Barwise, Admissible Sets and Structures: An Approach to Definability Theory, Perspectives in Math. Logic, Springer, New York, 1975. Zbl0316.02047
- [2] H. Becker and A. S. Kechris, The Descriptive Set Theory of Polish Group Actions, London Math. Soc. Lecture Note Ser. 232, Cambridge, 1996. Zbl0949.54052
- [3] H. Friedman and L. Stanley, A Borel reducibility theory for classes of structures, J. Symbolic Logic 54 (1989), 894-914. Zbl0692.03022
- [4] G. Hjorth, A universal Polish G-space, Topology Appl. 91 (1999), 141-150.
- [5] J. W. Hungerford, Algebra, Grad. Texts in Math. 73, Springer, New York, 1974.
- [6] A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, Berlin, 1995.
- [7] M. Makkai, An example concerning Scott heights, J. Symbolic Logic 46 (1981), 301-318. Zbl0501.03018
- [8] M. Nadel, Scott sentences and admissible sets, Ann. Math. Logic 7 (1974), 267-294. Zbl0301.02050
- [9] S. Shelah, Refuting the Ehrenfeucht conjecture on rigid models, Israel J. Math. 25 (1976), 273-286. Zbl0359.02053
- [10] W. Sierpiński, Elementary Number Theory, North-Holland, Amsterdam, 1988. Zbl0638.10001
- [11] S. Solecki, Equivalence relations induced by actions of Polish groups, Trans. Amer. Math. Soc. 347 (1995), 4765-4777. Zbl0852.04003
- [12] R. J. Vaught, Invariant sets in topology and logic, Fund. Math. 82 (1974/75) (collection of articles dedicated to Andrzej Mostowski on his sixtieth birthday), 269-294.