Every reasonably sized matrix group is a subgroup of S ∞
Fundamenta Mathematicae (2000)
- Volume: 164, Issue: 1, page 35-40
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] E. Artin, Algebraic Numbers and Algebraic Functions, Gordon and Breach, New York, 1967. Zbl0194.35301
- [2] N. Bourbaki, Commutative Algebra, Addison-Wesley, Reading, MA, 1972.
- [3] N. G. de Bruijn, Embedding theorems for infinite groups, Indag. Math. 19 (1957), 560-569; Konink. Nederl. Akad. Wetensch. Proc. 60 (1957), 560-569. Zbl0079.02802
- [4] J. Dieudonné, La géométrie des groupes classiques, 2nd ed., Springer, Berlin, 1963.
- [5] J. D. Dixon, P. M. Neumann and S. Thomas, Subgroups of small index in infinite symmetric groups, Bull. London Math. Soc. 18 (1986), 580-586. Zbl0607.20003
- [6] N. Jacobson, Basic Algebra II, W. H. Freeman, San Francisco, 1980.
- [7] I. Kaplansky, Fields and Rings, 2nd ed., Univ. of Chicago Press, Chicago, 1973.
- [8] R. D. Mauldin (ed.), The Scottish Book, Birkhäuser, Boston, 1981. Zbl0485.01013
- [9] J. Schreier und S. M. Ulam, Über die Permutationsgruppe der natürlichen Zahlenfolge, Studia Math. 4 (1933), 134-141. Zbl0008.20003
- [10] J.-P. Serre, Lie Algebras and Lie Groups, W. A. Benjamin, New York, 1965.
- [11] S. M. Ulam, A Collection of Mathematical Problems, Wiley, New York, 1960.
- [12] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964. Zbl0137.24201