# Trees of visible components in the Mandelbrot set

Fundamenta Mathematicae (2000)

- Volume: 164, Issue: 1, page 41-60
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topKauko, Virpi. "Trees of visible components in the Mandelbrot set." Fundamenta Mathematicae 164.1 (2000): 41-60. <http://eudml.org/doc/212447>.

@article{Kauko2000,

abstract = {We discuss the tree structures of the sublimbs of the Mandelbrot set M, using internal addresses of hyperbolic components. We find a counterexample to a conjecture by Eike Lau and Dierk Schleicher concerning topological equivalence between different trees of visible components, and give a new proof to a theorem of theirs concerning the periods of hyperbolic components in various trees.},

author = {Kauko, Virpi},

journal = {Fundamenta Mathematicae},

keywords = {combinatorial tree structure; Mandelbrot set; visible component},

language = {eng},

number = {1},

pages = {41-60},

title = {Trees of visible components in the Mandelbrot set},

url = {http://eudml.org/doc/212447},

volume = {164},

year = {2000},

}

TY - JOUR

AU - Kauko, Virpi

TI - Trees of visible components in the Mandelbrot set

JO - Fundamenta Mathematicae

PY - 2000

VL - 164

IS - 1

SP - 41

EP - 60

AB - We discuss the tree structures of the sublimbs of the Mandelbrot set M, using internal addresses of hyperbolic components. We find a counterexample to a conjecture by Eike Lau and Dierk Schleicher concerning topological equivalence between different trees of visible components, and give a new proof to a theorem of theirs concerning the periods of hyperbolic components in various trees.

LA - eng

KW - combinatorial tree structure; Mandelbrot set; visible component

UR - http://eudml.org/doc/212447

ER -

## References

top- [At] P. Atela, Bifurcations of dynamic rays in complex polynomials of degree two, Ergodic Theory Dynam. Systems 12 (1991), 401-423.
- [Be] A. F. Beardon, Iteration of Rational Functions, Complex Analytic Dynamical Systems, Grad. Texts in Math. 132, Springer, 1991.
- [BK] C. Bandt and K. Keller, Symbolic dynamics for angle-doubling on the circle II: Symbolic description of the abstract Mandelbrot set, Nonlinearity 6 (1993), 377-392. Zbl0785.58021
- [BS] H. Bruin and D. Schleicher, Symbolic Dynamics of Quadratic Polynomials, in preparation.
- [CG] L. Carleson and T. W. Gamelin, Complex Dynamics, Universitext, Springer, 1993. Zbl0782.30022
- [K1] K. Keller, Correspondence and translation principles for the Mandelbrot set, preprint #14, Institute for Mathematical Sciences, Stony Brook, 1997.
- [K2] K. Keller, Errata for Correspondence and translation principles for the Mandelbrot set', http://www.math-inf.uni-greifswald.de/~keller/research.html.
- [LS] E. Lau and D. Schleicher, Internal addresses in the Mandelbrot set and irreducibility of polynomials, preprint #19, Institute for Mathematical Sciences, Stony Brook, 1994,
- [La] P. Lavaurs, Une description combinatoire de l'involution définie par M sur les rationnels à dénominateur impair, C. R. Acad. Sci. Paris 303 (1986), 143-146. Zbl0663.58018
- [Mi] J. Milnor, Periodic orbits, external rays, and the Mandelbrot set; an expository account, preprint #3, Institute for Mathematical Sciences, Stony Brook, 1999.
- [Pe] C. Penrose, Quotients of the shift associated with dendrite Julia sets of quadratic polynomials, Ph.D. thesis, Warwick, 1990.
- [S1] D. Schleicher, Internal addresses in the Mandelbrot set and irreducibility of polynomials, Ph.D. thesis, Cornell Univ., 1994.
- [S2] D. Schleicher, Rational parameter rays of the Mandelbrot set, preprint #13, Institute for Mathematical Sciences, Stony Brook, 1997.
- [Th] W. Thurston, On the geometry and dynamics of iterated rational maps, preprint, Princeton Univ., 1985.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.