Borel and Baire reducibility
Fundamenta Mathematicae (2000)
- Volume: 164, Issue: 1, page 61-69
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topFriedman, Harvey. "Borel and Baire reducibility." Fundamenta Mathematicae 164.1 (2000): 61-69. <http://eudml.org/doc/212448>.
@article{Friedman2000,
abstract = {We prove that a Borel equivalence relation is classifiable by countable structures if and only if it is Borel reducible to a countable level of the hereditarily countable sets. We also prove the following result which was originally claimed in [FS89]: the zero density ideal of sets of natural numbers is not classifiable by countable structures.},
author = {Friedman, Harvey},
journal = {Fundamenta Mathematicae},
keywords = {Borel equivalence relation; analytic equivalence relation; Borel reduction; Baire reduction},
language = {eng},
number = {1},
pages = {61-69},
title = {Borel and Baire reducibility},
url = {http://eudml.org/doc/212448},
volume = {164},
year = {2000},
}
TY - JOUR
AU - Friedman, Harvey
TI - Borel and Baire reducibility
JO - Fundamenta Mathematicae
PY - 2000
VL - 164
IS - 1
SP - 61
EP - 69
AB - We prove that a Borel equivalence relation is classifiable by countable structures if and only if it is Borel reducible to a countable level of the hereditarily countable sets. We also prove the following result which was originally claimed in [FS89]: the zero density ideal of sets of natural numbers is not classifiable by countable structures.
LA - eng
KW - Borel equivalence relation; analytic equivalence relation; Borel reduction; Baire reduction
UR - http://eudml.org/doc/212448
ER -
References
top- [BK96] H. Becker and A. S. Kechris, The Descriptive Set Theory of Polish Group Actions, London Math. Soc. Lecture Note Ser. 232, Cambridge Univ. Press, 1996. Zbl0949.54052
- [DJK94] R. Dougherty, S. Jackson and A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc. 341 (1994), 193-225. Zbl0803.28009
- [Fr81] H. Friedman, On the necessary use of abstract set theory, Adv. Math. 41 (1981), 209-280. Zbl0483.03030
- [FS89] H. Friedman and L. Stanley, A Borel reducibility theory for classes of countable structures, J. Symbolic Logic 54 (1989), 894-914. Zbl0692.03022
- [HKL90] L. A. Harrington, A. S. Kechris and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), 903-928. Zbl0778.28011
- [Hj] G. Hjorth, Classification and orbit equivalence relations, preprint. Zbl0942.03056
- [Hj98] G. Hjorth, An absoluteness principle for Borel sets, J. Symbolic Logic 63 (1998), 663-693. Zbl0909.03042
- [HK97] G. Hjorth and A. S. Kechris, New dichotomies for Borel equivalence relations, Bull. Symbolic Logic 3 (1997), 329-346. Zbl0889.03038
- [HKL98] G. Hjorth, A. S. Kechris and A. Louveau, Borel equivalence relations induced by actions of the symmetric group, Ann. Pure Appl. Logic 92 (1998), 63-112. Zbl0930.03058
- [Ke94] A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, 1994.
- [Ke] A. S. Kechris, Actions of Polish groups and classification problems, preprint.
- [Sc65] D. Scott, Logic with denumerably long formulas and finite strings of quantifiers, in: Theory of Models, J. W. Addison, L. Henkin and A. Tarski (eds.), North-Holland, Amsterdam, 1965, 329-341.
- [Si99] S. G. Simpson, Subsystems of Second Order Arithmetic, Perspect. Math. Logic, Springer, 1999.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.