Gaussian automorphisms whose ergodic self-joinings are Gaussian

Mariusz Lemańczyk; F. Parreau; J. Thouvenot

Fundamenta Mathematicae (2000)

  • Volume: 164, Issue: 3, page 253-293
  • ISSN: 0016-2736

Abstract

top
 We study ergodic properties of the class of Gaussian automorphisms whose ergodic self-joinings remain Gaussian. For such automorphisms we describe the structure of their factors and of their centralizer. We show that Gaussian automorphisms with simple spectrum belong to this class.  We prove a new sufficient condition for non-disjointness of automorphisms giving rise to a better understanding of Furstenberg's problem relating disjointness to the lack of common factors. This and an elaborate study of isomorphisms between classical factors of Gaussian automorphisms allow us to give a complete solution of the disjointness problem between a Gaussian automorphism whose ergodic self-joinings remain Gaussian and an arbitrary Gaussian automorphism.

How to cite

top

Lemańczyk, Mariusz, Parreau, F., and Thouvenot, J.. "Gaussian automorphisms whose ergodic self-joinings are Gaussian." Fundamenta Mathematicae 164.3 (2000): 253-293. <http://eudml.org/doc/212456>.

@article{Lemańczyk2000,
abstract = {  We study ergodic properties of the class of Gaussian automorphisms whose ergodic self-joinings remain Gaussian. For such automorphisms we describe the structure of their factors and of their centralizer. We show that Gaussian automorphisms with simple spectrum belong to this class.  We prove a new sufficient condition for non-disjointness of automorphisms giving rise to a better understanding of Furstenberg's problem relating disjointness to the lack of common factors. This and an elaborate study of isomorphisms between classical factors of Gaussian automorphisms allow us to give a complete solution of the disjointness problem between a Gaussian automorphism whose ergodic self-joinings remain Gaussian and an arbitrary Gaussian automorphism. },
author = {Lemańczyk, Mariusz, Parreau, F., Thouvenot, J.},
journal = {Fundamenta Mathematicae},
keywords = {Gaussian space; Gaussian automorphism; Gaussian joining; ergodic self-joinings},
language = {eng},
number = {3},
pages = {253-293},
title = {Gaussian automorphisms whose ergodic self-joinings are Gaussian},
url = {http://eudml.org/doc/212456},
volume = {164},
year = {2000},
}

TY - JOUR
AU - Lemańczyk, Mariusz
AU - Parreau, F.
AU - Thouvenot, J.
TI - Gaussian automorphisms whose ergodic self-joinings are Gaussian
JO - Fundamenta Mathematicae
PY - 2000
VL - 164
IS - 3
SP - 253
EP - 293
AB -  We study ergodic properties of the class of Gaussian automorphisms whose ergodic self-joinings remain Gaussian. For such automorphisms we describe the structure of their factors and of their centralizer. We show that Gaussian automorphisms with simple spectrum belong to this class.  We prove a new sufficient condition for non-disjointness of automorphisms giving rise to a better understanding of Furstenberg's problem relating disjointness to the lack of common factors. This and an elaborate study of isomorphisms between classical factors of Gaussian automorphisms allow us to give a complete solution of the disjointness problem between a Gaussian automorphism whose ergodic self-joinings remain Gaussian and an arbitrary Gaussian automorphism.
LA - eng
KW - Gaussian space; Gaussian automorphism; Gaussian joining; ergodic self-joinings
UR - http://eudml.org/doc/212456
ER -

References

top
  1. [1] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, 1982. 
  2. [2] C. Foiaş et S. Strătilă, Ensembles de Kronecker dans la théorie ergodique, C. R. Acad. Sci. Paris Sér. A 267 (1968), 166-168. Zbl0218.60040
  3. [3] H. Furstenberg, Disjointness in ergodic theory, minimal sets and Diophantine approximation, Math. Systems Theory 1 (1967), 1-49. Zbl0146.28502
  4. [4] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, NJ, 1981. 
  5. [5] H. Furstenberg and B. Weiss, The finite multipliers of infinite ergodic transformations, in: Lecture Notes in Math. 668, Springer, 1978, 127-132. 
  6. [6] E. Glasner, B. Host and D. Rudolph, Simple systems and their higher order self-joinings, Israel J. Math. 78 (1992), 131-142. Zbl0779.28010
  7. [7] F. Hahn and W. Parry, Some characteristic properties of dynamical systems with quasi-discrete spectrum, Math. Systems Theory 2 (1968), 179-198. Zbl0167.32902
  8. [8] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis II, Springer, New York, 1970. Zbl0213.40103
  9. [9] B. Host, Mixing of all orders and pairwise independent joinings of systems with singular spectrum, Israel J. Math. 76 (1991), 289-298. Zbl0790.28010
  10. [10] B. Host, J.-F. Méla et F. Parreau, Analyse harmonique des mesures, Astérisque 135-136 (1986). Zbl0589.43001
  11. [11] K. Itô, Stochastic Processes I (Russian transl.), Izdat. Inostr. Lit., Moscow, 1960. 
  12. [12] A. Iwanik et J. de Sam Lazaro, Sur la multiplicité L p d’un automorphisme gaussien, C. R. Acad. Sci. Paris Sér. I 312 (1991), 875-876. 
  13. [13] A. del Junco and M. Lemańczyk, Simple systems are disjoint from Gaussian systems, Studia Math. 133 (1999), 249-256. Zbl0931.37001
  14. [14] A. del Junco, M. Lemańczyk and M. K. Mentzen, Semisimplicity, joinings and group extensions, Studia Math. 112 (1995), 141-164. Zbl0814.28007
  15. [15] A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory Dynam. Systems 7 (1987), 531-557. Zbl0646.60010
  16. [16] M. Ledoux, Inégalités isopérimétriques et calcul stochastique, in: Séminaire de Probabilités XXII, Lecture Notes in Math. 1321, Springer, 1988, 249-259. 
  17. [17] M. Lemańczyk and F. Parreau, On the disjointness problem for Gaussian automorphisms, Proc. Amer. Math. Soc. 127 (1999), 2073-2081. Zbl0923.28007
  18. [18] M. Lemańczyk and J. de Sam Lazaro, Spectral analysis of certain compact factors for Gaussian dynamical systems, Israel J. Math. 98 (1997), 307-328. Zbl0880.28013
  19. [19] P. Leonov, The use of the characteristic functional and semi-invariants in the ergodic theory of stationary processes, Dokl. Akad. Nauk SSSR 133 (1960), 523-526 (in Russian); English transl.: Soviet Math. Dokl. 1 (1960), 878-881. 
  20. [20] W. Mackey, Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-169. Zbl0082.11201
  21. [21] D. Newton, On Gaussian processes with simple spectrum, Z. Wahrsch. Verw. Gebiete 5 (1966), 207-209. Zbl0142.13804
  22. [22] J. Neveu, Processus aléatoires gaussiens, Presses Univ. Montréal, 1968. Zbl0192.54701
  23. [23] W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press, 1981. Zbl0449.28016
  24. [24] M. Queffélec, Substitution Dynamical Systems - Spectral Analysis, Lecture Notes in Math. 1294, Springer, 1988. 
  25. [25] D. J. Rudolph, An example of a measure-preserving map with minimal self-joinings and applications, J. Anal. Math. 35 (1979), 97-122. Zbl0446.28018
  26. [26] T. de la Rue, Entropie d’un système dynamique gaussien: Cas d’une action de d , C. R. Acad. Sci. Paris Sér. I 317 (1993), 191-194. 
  27. [27] T. de la Rue, Systèmes dynamiques gaussiens d'entropie nulle, lâchement et non lâchement Bernoulli, Ergodic Theory Dynam. Systems 16 (1996), 1-26. 
  28. [28] T. de la Rue, Rang des systèmes dynamiques gaussiens, Israel J. Math. 104 (1998), 261-283. 
  29. [29] V. V. Ryzhikov, Joinings, intertwining operators, factors and mixing properties of dynamical systems, Russian Acad. Sci. Izv. Math. 42 (1994), 91-114. 
  30. [30] Ya. G. Sinai, The structure and properties of invariant measurable partitions, Dokl. Akad. Nauk SSSR 141 (1961), 1038-1041. 
  31. [31] J.-P. Thouvenot, Une classe de systèmes pour lesquels la conjecture de Pinsker est vraie, Israel J. Math. 21 (1975), 208-214. Zbl0329.28009
  32. [32] J.-P. Thouvenot, The metrical structure of some Gaussian processes, in: Proc. Conf. Ergodic Theory and Related Topics II (Georgenthal, 1986), Teubner Texte Math. 94, Teubner, Leipzig, 1987, 195-198. 
  33. [33] J.-P. Thouvenot, Some properties and applications of joinings in ergodic theory, in: Ergodic Theory and its Connections with Harmonic Analysis (Alexandria, 1993), London Math. Soc. Lecture Note Ser. 205, Cambridge Univ. Press, 1995, 207-235. Zbl0848.28009
  34. [34] J.-P. Thouvenot, Utilisation des processus gaussiens en théorie ergodique, Astérisque 236 (1996), 303-308. 
  35. [35] V. S. Varadarajan, Geometry of Quantum Theory, vol. II, Van Nostrand, 1970. Zbl0194.28802
  36. [36] W. Veech, A criterion for a process to be prime, Monatsh. Math. 94 (1982), 335-341. Zbl0499.28016
  37. [37] M. Vershik, On the theory of normal dynamic systems, Soviet Math. Dokl. 144 (1962), 625-628. Zbl0197.39401
  38. [38] A. M. Vershik, Spectral and metric isomorphism of some normal dynamical systems, ibid., 693-696. Zbl0197.39402
  39. [39] R. Zimmer, Ergodic group actions with generalized discrete spectrum, Illinois J. Math. 20 (1976), 555-588. Zbl0349.28011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.