On the generalized Massey–Rolfsen invariant for link maps

A. Skopenkov

Fundamenta Mathematicae (2000)

  • Volume: 165, Issue: 1, page 1-15
  • ISSN: 0016-2736

Abstract

top
For K = K 1 . . . K s and a link map f : K m let K = i < j K i × K j , define a map f : K S m - 1 by f ( x , y ) = ( f x - f y ) / | f x - f y | and a (generalized) Massey-Rolfsen invariant α ( f ) π m - 1 ( K ) to be the homotopy class of f . We prove that for a polyhedron K of dimension ≤ m - 2 under certain (weakened metastable) dimension restrictions, α is an onto or a 1 - 1 map from the set of link maps f : K m up to link concordance to π m - 1 ( K ) . If K 1 , . . . , K s are closed highly homologically connected manifolds of dimension p 1 , . . . , p s (in particular, homology spheres), then π m - 1 ( K ) i < j π p i + p j - m + 1 S .

How to cite

top

Skopenkov, A.. "On the generalized Massey–Rolfsen invariant for link maps." Fundamenta Mathematicae 165.1 (2000): 1-15. <http://eudml.org/doc/212458>.

@article{Skopenkov2000,
abstract = {For $K = K_1⊔...⊔K_s$ and a link map $f:K → ℝ^m$ let $K^∼ = ⊔_\{i < j\} K_i × K_j$, define a map $f^∼ : K^∼ → S^\{m - 1\}$ by $f^∼(x, y) = (fx - fy)/|fx - fy|$ and a (generalized) Massey-Rolfsen invariant $α(f) ∈ π^\{m - 1\}(K)$ to be the homotopy class of $f^∼$. We prove that for a polyhedron K of dimension ≤ m - 2 under certain (weakened metastable) dimension restrictions, α is an onto or a 1 - 1 map from the set of link maps $f:K → ℝ^m$ up to link concordance to $π^\{m - 1\}(K^∼)$. If $K_1,...,K_s$ are closed highly homologically connected manifolds of dimension $p_1,...,p_s$ (in particular, homology spheres), then $π^\{m-1\}(K^∼)≅⊕_\{i < j\} π^S_\{p_i + p_j - m + 1\}$.},
author = {Skopenkov, A.},
journal = {Fundamenta Mathematicae},
keywords = {deleted product; Massey-Rolfsen invariant; link maps; link homotopy; stable homotopy group; double suspension; codimension two; highly connected manifolds; link map; link concordance; cohomotopy},
language = {eng},
number = {1},
pages = {1-15},
title = {On the generalized Massey–Rolfsen invariant for link maps},
url = {http://eudml.org/doc/212458},
volume = {165},
year = {2000},
}

TY - JOUR
AU - Skopenkov, A.
TI - On the generalized Massey–Rolfsen invariant for link maps
JO - Fundamenta Mathematicae
PY - 2000
VL - 165
IS - 1
SP - 1
EP - 15
AB - For $K = K_1⊔...⊔K_s$ and a link map $f:K → ℝ^m$ let $K^∼ = ⊔_{i < j} K_i × K_j$, define a map $f^∼ : K^∼ → S^{m - 1}$ by $f^∼(x, y) = (fx - fy)/|fx - fy|$ and a (generalized) Massey-Rolfsen invariant $α(f) ∈ π^{m - 1}(K)$ to be the homotopy class of $f^∼$. We prove that for a polyhedron K of dimension ≤ m - 2 under certain (weakened metastable) dimension restrictions, α is an onto or a 1 - 1 map from the set of link maps $f:K → ℝ^m$ up to link concordance to $π^{m - 1}(K^∼)$. If $K_1,...,K_s$ are closed highly homologically connected manifolds of dimension $p_1,...,p_s$ (in particular, homology spheres), then $π^{m-1}(K^∼)≅⊕_{i < j} π^S_{p_i + p_j - m + 1}$.
LA - eng
KW - deleted product; Massey-Rolfsen invariant; link maps; link homotopy; stable homotopy group; double suspension; codimension two; highly connected manifolds; link map; link concordance; cohomotopy
UR - http://eudml.org/doc/212458
ER -

References

top
  1. [Ca 86] A. Casson, Three lectures on new infinite constructions in 4-dimensional manifolds, in: A la Recherche de la Topologie Perdue, L. Guillou and A. Marin (eds.), Progr. Math. 62, Birkhäuser, Boston, 1986, 201-244. 
  2. [DRS 91] A. N. Dranishnikov, D. Repovš and E. V. Shchepin, On intersections of compacta of complementary dimensions in Euclidean space, Topology Appl. 38 (1991), 237-253. Zbl0719.54015
  3. [HK 98] N. Habegger and U. Kaiser, Link homotopy in 2-metastable range, Topology 37 (1998), 75-94. Zbl0890.57036
  4. [Ha 69] L. S. Harris, Intersections and embeddings of polyhedra, ibid. 8 (1969), 1-26. 
  5. [Ja 54] I. James, On the iterated suspension, Quart. J. Math. Oxford 5 (1954), 1-10. 
  6. [Ke 59] M. Kervaire, An interpretation of G. Whitehead's generalization of H. Hopf's invariant, Ann. of Math. 62 (1959), 345-362. Zbl0088.39205
  7. [Ki 90] P. Kirk, Link homotopy with one codimension-two component, Trans. Amer. Math. Soc. 319 (1990), 663-688. Zbl0705.57014
  8. [Ko 88] U. Koschorke, Link maps and the geometry of their invariants, Manuscripta Math. 61 (1988), 383-415. Zbl0689.57016
  9. [Ko 90] U. Koschorke, On link maps and their homotopy classification, Math. Ann. 286 (1990), 753-782. Zbl0662.57013
  10. [Ko 92] U. Koschorke, Homotopy, concordance and bordism of link maps, preprint, Univ. of Siegen, 1992. 
  11. [Ma 90] W. Massey, Homotopy classification of 3-component links of codimension greater than 2, Topology Appl. 34 (1990), 269-300. Zbl0717.57009
  12. [MR 86] W. Massey and D. Rolfsen, Homotopy classification of higher dimensional links, Indiana Univ. Math. J. 34 (1986), 375-391. Zbl0575.57011
  13. [Me] S. Melikhov, Singular link concordance implies link homotopy in codimension ≥ 3, submitted. 
  14. [Mi 54] J. Milnor, Link groups, Ann. of Math. 59 (1954), 177-195. Zbl0055.16901
  15. [MT 68] R. E. Mosher and M. C. Tangora, Cohomology Operations and Applications in Homotopy Theory, Harper and Row, New York, 1968. Zbl0153.53302
  16. [Ne 98] V. M. Nezhinskiĭ, An analogue of the Milnor group of a link in the theory of multidimensional links, Zap. Nauchn. Sem. POMI 252 (1998), 175-190 (in Russian). 
  17. [RS 96] D. Repovš and A. Skopenkov, Embeddability and isotopy of polyhedra in Euclidean spaces, Proc. Steklov Inst. Math. 212 (1996), 163-178. 
  18. [RS 98] D. Repovš and A. Skopenkov, A deleted product criterion for approximability of maps by embeddings, Topology Appl. 87 (1998), 1-19. 
  19. [RS 99] D. Repovš and A. Skopenkov, New results on embeddings of polyhedra and manifolds into Euclidean spaces, Uspekhi Mat. Nauk 54 (1999), no. 6, 61-109 (in Russian); English transl.: Russian Math. Surveys, to appear. 
  20. [RS] D. Repovš and A. Skopenkov, On projected embeddings and desuspension of the α-invariant, submitted. 
  21. [RS 72] C. P. Rourke and B. J. Sanderson, Introduction to Piecewise-Linear Topology, Ergeb. Math. Grenzgeb. 69, Springer, Berlin, 1972. Zbl0254.57010
  22. [Sa 99] R. F. Sayakhova, Homotopy classification of singular links of type (1,...,1, m;3) with m > 1, Zap. Nauchn. Sem. POMI 261 (1999), 229-239 (in Russian). Zbl1008.57019
  23. [Sc 68] G. P. Scott, Homotopy links, Abh. Math. Sem. Univ. Hamburg 32 (1968), 186-190. Zbl0165.57102
  24. [SS 90] J. Segal and S. Spież, On transversely trivial maps, Questions Answers Gen. Topology 8 (1990), 91-100. Zbl0715.54031
  25. [SS 92] J. Segal and S. Spież, Quasi-embeddings and embedding of polyhedra in m , Topology Appl. 45 (1992), 275-282. 
  26. [SSS 98] J. Segal, A. Skopenkov and S. Spież, Embedding of polyhedra in m and the deleted product obstruction, Topology Appl. 85 (1998), 335-344. Zbl0934.57025
  27. [Se 53] J. P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953), 258-294. Zbl0052.19303
  28. [Sk 97] A. Skopenkov, On the deleted product criterion for embeddability of manifolds in m , Comment. Math. Helv. 72 (1997), 543-555. Zbl0905.57015
  29. [Sk 98] A. Skopenkov, On the deleted product criterion for embeddability in m , Proc. Amer. Math. Soc. 126 (1998), 2267-2276. 
  30. [Sk] A. Skopenkov, On the Wu-Haefliger-Hirsch invariants of embeddings and immersions, submitted. Zbl1012.57035
  31. [ST 91] S. Spież and H. Toruńczyk, Moving compacta in m apart, Topology Appl. 41 (1991), 193-204. Zbl0770.54034
  32. [We 67] C. Weber, Plongements de polyèdres dans le domaine metastable, Comment. Math. Helv. 42 (1967), 1-27. Zbl0152.22402

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.