On the generalized Massey–Rolfsen invariant for link maps
Fundamenta Mathematicae (2000)
- Volume: 165, Issue: 1, page 1-15
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topSkopenkov, A.. "On the generalized Massey–Rolfsen invariant for link maps." Fundamenta Mathematicae 165.1 (2000): 1-15. <http://eudml.org/doc/212458>.
@article{Skopenkov2000,
abstract = {For $K = K_1⊔...⊔K_s$ and a link map $f:K → ℝ^m$ let $K^∼ = ⊔_\{i < j\} K_i × K_j$, define a map $f^∼ : K^∼ → S^\{m - 1\}$ by $f^∼(x, y) = (fx - fy)/|fx - fy|$ and a (generalized) Massey-Rolfsen invariant $α(f) ∈ π^\{m - 1\}(K)$ to be the homotopy class of $f^∼$. We prove that for a polyhedron K of dimension ≤ m - 2 under certain (weakened metastable) dimension restrictions, α is an onto or a 1 - 1 map from the set of link maps $f:K → ℝ^m$ up to link concordance to $π^\{m - 1\}(K^∼)$. If $K_1,...,K_s$ are closed highly homologically connected manifolds of dimension $p_1,...,p_s$ (in particular, homology spheres), then $π^\{m-1\}(K^∼)≅⊕_\{i < j\} π^S_\{p_i + p_j - m + 1\}$.},
author = {Skopenkov, A.},
journal = {Fundamenta Mathematicae},
keywords = {deleted product; Massey-Rolfsen invariant; link maps; link homotopy; stable homotopy group; double suspension; codimension two; highly connected manifolds; link map; link concordance; cohomotopy},
language = {eng},
number = {1},
pages = {1-15},
title = {On the generalized Massey–Rolfsen invariant for link maps},
url = {http://eudml.org/doc/212458},
volume = {165},
year = {2000},
}
TY - JOUR
AU - Skopenkov, A.
TI - On the generalized Massey–Rolfsen invariant for link maps
JO - Fundamenta Mathematicae
PY - 2000
VL - 165
IS - 1
SP - 1
EP - 15
AB - For $K = K_1⊔...⊔K_s$ and a link map $f:K → ℝ^m$ let $K^∼ = ⊔_{i < j} K_i × K_j$, define a map $f^∼ : K^∼ → S^{m - 1}$ by $f^∼(x, y) = (fx - fy)/|fx - fy|$ and a (generalized) Massey-Rolfsen invariant $α(f) ∈ π^{m - 1}(K)$ to be the homotopy class of $f^∼$. We prove that for a polyhedron K of dimension ≤ m - 2 under certain (weakened metastable) dimension restrictions, α is an onto or a 1 - 1 map from the set of link maps $f:K → ℝ^m$ up to link concordance to $π^{m - 1}(K^∼)$. If $K_1,...,K_s$ are closed highly homologically connected manifolds of dimension $p_1,...,p_s$ (in particular, homology spheres), then $π^{m-1}(K^∼)≅⊕_{i < j} π^S_{p_i + p_j - m + 1}$.
LA - eng
KW - deleted product; Massey-Rolfsen invariant; link maps; link homotopy; stable homotopy group; double suspension; codimension two; highly connected manifolds; link map; link concordance; cohomotopy
UR - http://eudml.org/doc/212458
ER -
References
top- [Ca 86] A. Casson, Three lectures on new infinite constructions in 4-dimensional manifolds, in: A la Recherche de la Topologie Perdue, L. Guillou and A. Marin (eds.), Progr. Math. 62, Birkhäuser, Boston, 1986, 201-244.
- [DRS 91] A. N. Dranishnikov, D. Repovš and E. V. Shchepin, On intersections of compacta of complementary dimensions in Euclidean space, Topology Appl. 38 (1991), 237-253. Zbl0719.54015
- [HK 98] N. Habegger and U. Kaiser, Link homotopy in 2-metastable range, Topology 37 (1998), 75-94. Zbl0890.57036
- [Ha 69] L. S. Harris, Intersections and embeddings of polyhedra, ibid. 8 (1969), 1-26.
- [Ja 54] I. James, On the iterated suspension, Quart. J. Math. Oxford 5 (1954), 1-10.
- [Ke 59] M. Kervaire, An interpretation of G. Whitehead's generalization of H. Hopf's invariant, Ann. of Math. 62 (1959), 345-362. Zbl0088.39205
- [Ki 90] P. Kirk, Link homotopy with one codimension-two component, Trans. Amer. Math. Soc. 319 (1990), 663-688. Zbl0705.57014
- [Ko 88] U. Koschorke, Link maps and the geometry of their invariants, Manuscripta Math. 61 (1988), 383-415. Zbl0689.57016
- [Ko 90] U. Koschorke, On link maps and their homotopy classification, Math. Ann. 286 (1990), 753-782. Zbl0662.57013
- [Ko 92] U. Koschorke, Homotopy, concordance and bordism of link maps, preprint, Univ. of Siegen, 1992.
- [Ma 90] W. Massey, Homotopy classification of 3-component links of codimension greater than 2, Topology Appl. 34 (1990), 269-300. Zbl0717.57009
- [MR 86] W. Massey and D. Rolfsen, Homotopy classification of higher dimensional links, Indiana Univ. Math. J. 34 (1986), 375-391. Zbl0575.57011
- [Me] S. Melikhov, Singular link concordance implies link homotopy in codimension ≥ 3, submitted.
- [Mi 54] J. Milnor, Link groups, Ann. of Math. 59 (1954), 177-195. Zbl0055.16901
- [MT 68] R. E. Mosher and M. C. Tangora, Cohomology Operations and Applications in Homotopy Theory, Harper and Row, New York, 1968. Zbl0153.53302
- [Ne 98] V. M. Nezhinskiĭ, An analogue of the Milnor group of a link in the theory of multidimensional links, Zap. Nauchn. Sem. POMI 252 (1998), 175-190 (in Russian).
- [RS 96] D. Repovš and A. Skopenkov, Embeddability and isotopy of polyhedra in Euclidean spaces, Proc. Steklov Inst. Math. 212 (1996), 163-178.
- [RS 98] D. Repovš and A. Skopenkov, A deleted product criterion for approximability of maps by embeddings, Topology Appl. 87 (1998), 1-19.
- [RS 99] D. Repovš and A. Skopenkov, New results on embeddings of polyhedra and manifolds into Euclidean spaces, Uspekhi Mat. Nauk 54 (1999), no. 6, 61-109 (in Russian); English transl.: Russian Math. Surveys, to appear.
- [RS] D. Repovš and A. Skopenkov, On projected embeddings and desuspension of the α-invariant, submitted.
- [RS 72] C. P. Rourke and B. J. Sanderson, Introduction to Piecewise-Linear Topology, Ergeb. Math. Grenzgeb. 69, Springer, Berlin, 1972. Zbl0254.57010
- [Sa 99] R. F. Sayakhova, Homotopy classification of singular links of type (1,...,1, m;3) with m > 1, Zap. Nauchn. Sem. POMI 261 (1999), 229-239 (in Russian). Zbl1008.57019
- [Sc 68] G. P. Scott, Homotopy links, Abh. Math. Sem. Univ. Hamburg 32 (1968), 186-190. Zbl0165.57102
- [SS 90] J. Segal and S. Spież, On transversely trivial maps, Questions Answers Gen. Topology 8 (1990), 91-100. Zbl0715.54031
- [SS 92] J. Segal and S. Spież, Quasi-embeddings and embedding of polyhedra in , Topology Appl. 45 (1992), 275-282.
- [SSS 98] J. Segal, A. Skopenkov and S. Spież, Embedding of polyhedra in and the deleted product obstruction, Topology Appl. 85 (1998), 335-344. Zbl0934.57025
- [Se 53] J. P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953), 258-294. Zbl0052.19303
- [Sk 97] A. Skopenkov, On the deleted product criterion for embeddability of manifolds in , Comment. Math. Helv. 72 (1997), 543-555. Zbl0905.57015
- [Sk 98] A. Skopenkov, On the deleted product criterion for embeddability in , Proc. Amer. Math. Soc. 126 (1998), 2267-2276.
- [Sk] A. Skopenkov, On the Wu-Haefliger-Hirsch invariants of embeddings and immersions, submitted. Zbl1012.57035
- [ST 91] S. Spież and H. Toruńczyk, Moving compacta in apart, Topology Appl. 41 (1991), 193-204. Zbl0770.54034
- [We 67] C. Weber, Plongements de polyèdres dans le domaine metastable, Comment. Math. Helv. 42 (1967), 1-27. Zbl0152.22402
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.