Weakly α-favourable measure spaces

David Fremlin

Fundamenta Mathematicae (2000)

  • Volume: 165, Issue: 1, page 67-94
  • ISSN: 0016-2736

Abstract

top
I discuss the properties of α-favourable and weakly α-favourable measure spaces, with remarks on their relations with other classes.

How to cite

top

Fremlin, David. "Weakly α-favourable measure spaces." Fundamenta Mathematicae 165.1 (2000): 67-94. <http://eudml.org/doc/212461>.

@article{Fremlin2000,
abstract = {I discuss the properties of α-favourable and weakly α-favourable measure spaces, with remarks on their relations with other classes.},
author = {Fremlin, David},
journal = {Fundamenta Mathematicae},
keywords = {product of probability spaces; image of measures; infinite game; -favourable measure spaces},
language = {eng},
number = {1},
pages = {67-94},
title = {Weakly α-favourable measure spaces},
url = {http://eudml.org/doc/212461},
volume = {165},
year = {2000},
}

TY - JOUR
AU - Fremlin, David
TI - Weakly α-favourable measure spaces
JO - Fundamenta Mathematicae
PY - 2000
VL - 165
IS - 1
SP - 67
EP - 94
AB - I discuss the properties of α-favourable and weakly α-favourable measure spaces, with remarks on their relations with other classes.
LA - eng
KW - product of probability spaces; image of measures; infinite game; -favourable measure spaces
UR - http://eudml.org/doc/212461
ER -

References

top
  1. [1] A. Bellow and D. Kölzow (eds.), Measure Theory (Oberwolfach, 1975), Lecture Notes in Math. 541, Springer, 1976. 
  2. [2] J. R. Choksi and D. H. Fremlin, Completion regular measures on product spaces, Math. Ann. 241 (1979), 113-128. Zbl0387.60006
  3. [3] G. Choquet, Lectures in Analysis, Vol. I, Benjamin, 1969. 
  4. [4] G. Debs, Stratégies gagnantes dans certains jeux topologiques, Fund. Math. 126 (1985), 93-105. Zbl0587.54033
  5. [5] M. Dekiert, Two results for monocompact measures, Manuscripta Math. 80 (1993), 339-346. Zbl0803.28003
  6. [6] P. Erdős, A. Hajnal, A. Máté and R. Rado, tCombinatorial Set Theory: Partition Relations for Cardinals, Akadémiai Kiadó, 1984. Zbl0573.03019
  7. [7] D. H. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, 1984. Zbl0551.03033
  8. [8] D. H. Fremlin, Measure-additive coverings and measurable selectors, Dissertationes Math. 260 (1987). Zbl0703.28003
  9. [9] D. H. Fremlin, Measure algebras, pp. 876-980 in [15]. 
  10. [10] D. H. Fremlin, Measure Theory, in preparation. Drafts available by anonymous ftp from ftp.essex.ac.uk/pub/measuretheory. 
  11. [11] F. Galvin and R. Telgársky, Stationary strategies in topological games, Topology Appl. 22 (1986), 51-69. Zbl0581.90108
  12. [12] T. Jech, Set Theory, Academic Press, 1978. 
  13. [13] S. Koppelberg, General Theory of Boolean Algebras, Vol. 1 of [15]. Zbl0486.03029
  14. [14] E. Marczewski, On compact measures, Fund. Math. 40 (1953), 113-124. Zbl0052.04902
  15. [15] J. D. Monk (ed.), Handbook of Boolean Algebras, North-Holland, 1989. 
  16. [16] K. Musiał, Inheritness of compactness and perfectness of measures by thick subsets, pp. 31-42 in [1]. Zbl0341.28003
  17. [17] J. K. Pachl, Two classes of measures, Colloq. Math. 42 (1979), 331-340. Zbl0428.28002
  18. [18] D. Ross, Compact measures have Loeb preimages, Proc. Amer. Math. Soc. 115 (1992), 365-370. Zbl0755.28009
  19. [19] C. Ryll-Nardzewski, On quasi-compact measures, Fund. Math. 40 (1953), 125-130. 
  20. [20] V. V. Sazonov, On perfect measures, Amer. Math. Soc. Transl. (2) 48 (1966), 229-254. 
  21. [21] S. Shelah, Strong negative partition above the continuum, J. Symbolic Logic 55 (1990), 21-31. Zbl0708.03026
  22. [22] S. Shelah, Strong negative partition relations below the continuum, Acta Math. Hungar. 58 (1991), 95-100. Zbl0773.03035
  23. [23] S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261-294. Zbl0658.03028
  24. [24] F. Topsøe, Approximating pavings and construction of measures, Colloq. Math. 42 (1979), 377-385. Zbl0448.28001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.