# Weakly α-favourable measure spaces

Fundamenta Mathematicae (2000)

- Volume: 165, Issue: 1, page 67-94
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topFremlin, David. "Weakly α-favourable measure spaces." Fundamenta Mathematicae 165.1 (2000): 67-94. <http://eudml.org/doc/212461>.

@article{Fremlin2000,

abstract = {I discuss the properties of α-favourable and weakly α-favourable measure spaces, with remarks on their relations with other classes.},

author = {Fremlin, David},

journal = {Fundamenta Mathematicae},

keywords = {product of probability spaces; image of measures; infinite game; -favourable measure spaces},

language = {eng},

number = {1},

pages = {67-94},

title = {Weakly α-favourable measure spaces},

url = {http://eudml.org/doc/212461},

volume = {165},

year = {2000},

}

TY - JOUR

AU - Fremlin, David

TI - Weakly α-favourable measure spaces

JO - Fundamenta Mathematicae

PY - 2000

VL - 165

IS - 1

SP - 67

EP - 94

AB - I discuss the properties of α-favourable and weakly α-favourable measure spaces, with remarks on their relations with other classes.

LA - eng

KW - product of probability spaces; image of measures; infinite game; -favourable measure spaces

UR - http://eudml.org/doc/212461

ER -

## References

top- [1] A. Bellow and D. Kölzow (eds.), Measure Theory (Oberwolfach, 1975), Lecture Notes in Math. 541, Springer, 1976.
- [2] J. R. Choksi and D. H. Fremlin, Completion regular measures on product spaces, Math. Ann. 241 (1979), 113-128. Zbl0387.60006
- [3] G. Choquet, Lectures in Analysis, Vol. I, Benjamin, 1969.
- [4] G. Debs, Stratégies gagnantes dans certains jeux topologiques, Fund. Math. 126 (1985), 93-105. Zbl0587.54033
- [5] M. Dekiert, Two results for monocompact measures, Manuscripta Math. 80 (1993), 339-346. Zbl0803.28003
- [6] P. Erdős, A. Hajnal, A. Máté and R. Rado, tCombinatorial Set Theory: Partition Relations for Cardinals, Akadémiai Kiadó, 1984. Zbl0573.03019
- [7] D. H. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, 1984. Zbl0551.03033
- [8] D. H. Fremlin, Measure-additive coverings and measurable selectors, Dissertationes Math. 260 (1987). Zbl0703.28003
- [9] D. H. Fremlin, Measure algebras, pp. 876-980 in [15].
- [10] D. H. Fremlin, Measure Theory, in preparation. Drafts available by anonymous ftp from ftp.essex.ac.uk/pub/measuretheory.
- [11] F. Galvin and R. Telgársky, Stationary strategies in topological games, Topology Appl. 22 (1986), 51-69. Zbl0581.90108
- [12] T. Jech, Set Theory, Academic Press, 1978.
- [13] S. Koppelberg, General Theory of Boolean Algebras, Vol. 1 of [15]. Zbl0486.03029
- [14] E. Marczewski, On compact measures, Fund. Math. 40 (1953), 113-124. Zbl0052.04902
- [15] J. D. Monk (ed.), Handbook of Boolean Algebras, North-Holland, 1989.
- [16] K. Musiał, Inheritness of compactness and perfectness of measures by thick subsets, pp. 31-42 in [1]. Zbl0341.28003
- [17] J. K. Pachl, Two classes of measures, Colloq. Math. 42 (1979), 331-340. Zbl0428.28002
- [18] D. Ross, Compact measures have Loeb preimages, Proc. Amer. Math. Soc. 115 (1992), 365-370. Zbl0755.28009
- [19] C. Ryll-Nardzewski, On quasi-compact measures, Fund. Math. 40 (1953), 125-130.
- [20] V. V. Sazonov, On perfect measures, Amer. Math. Soc. Transl. (2) 48 (1966), 229-254.
- [21] S. Shelah, Strong negative partition above the continuum, J. Symbolic Logic 55 (1990), 21-31. Zbl0708.03026
- [22] S. Shelah, Strong negative partition relations below the continuum, Acta Math. Hungar. 58 (1991), 95-100. Zbl0773.03035
- [23] S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261-294. Zbl0658.03028
- [24] F. Topsøe, Approximating pavings and construction of measures, Colloq. Math. 42 (1979), 377-385. Zbl0448.28001

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.