Cellularity of free products of Boolean algebras (or topologies)
Fundamenta Mathematicae (2000)
- Volume: 166, Issue: 1-2, page 153-208
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topShelah, Saharon. "Cellularity of free products of Boolean algebras (or topologies)." Fundamenta Mathematicae 166.1-2 (2000): 153-208. <http://eudml.org/doc/212474>.
@article{Shelah2000,
abstract = {The aim this paper is to present an answer to Problem 1 of Monk [10], [11]. We do this by proving in particular that if μ is a strong limit singular cardinal, $θ = (2^\{cf(μ)\})^+$ and $2^μ = μ^+$ then there are Boolean algebras $\mathbb \{B\}_1,\mathbb \{B\}_2$ such that
$c(\mathbb \{B\}_1) = μ, c(\mathbb \{B\}_2) < θ but c(\mathbb \{B\}_1*\mathbb \{B\}_2)=μ^+$.
Further we improve this result, deal with the method and the necessity of the assumptions. In particular we prove that if $\mathbb \{B\}$ is a ccc Boolean algebra and $μ^\{ℶ_ω\} ≤ λ = cf(λ) ≤ 2^μ$ then $\mathbb \{B\}$ satisfies the λ-Knaster condition (using the “revised GCH theorem”).},
author = {Shelah, Saharon},
journal = {Fundamenta Mathematicae},
keywords = {set theory; pcf; Boolean algebras; cellularity; product; colourings},
language = {eng},
number = {1-2},
pages = {153-208},
title = {Cellularity of free products of Boolean algebras (or topologies)},
url = {http://eudml.org/doc/212474},
volume = {166},
year = {2000},
}
TY - JOUR
AU - Shelah, Saharon
TI - Cellularity of free products of Boolean algebras (or topologies)
JO - Fundamenta Mathematicae
PY - 2000
VL - 166
IS - 1-2
SP - 153
EP - 208
AB - The aim this paper is to present an answer to Problem 1 of Monk [10], [11]. We do this by proving in particular that if μ is a strong limit singular cardinal, $θ = (2^{cf(μ)})^+$ and $2^μ = μ^+$ then there are Boolean algebras $\mathbb {B}_1,\mathbb {B}_2$ such that
$c(\mathbb {B}_1) = μ, c(\mathbb {B}_2) < θ but c(\mathbb {B}_1*\mathbb {B}_2)=μ^+$.
Further we improve this result, deal with the method and the necessity of the assumptions. In particular we prove that if $\mathbb {B}$ is a ccc Boolean algebra and $μ^{ℶ_ω} ≤ λ = cf(λ) ≤ 2^μ$ then $\mathbb {B}$ satisfies the λ-Knaster condition (using the “revised GCH theorem”).
LA - eng
KW - set theory; pcf; Boolean algebras; cellularity; product; colourings
UR - http://eudml.org/doc/212474
ER -
References
top- [1] M. Džamonja and S. Shelah, Universal graphs at successors of singular strong limits. Zbl1055.03030
- [2] R. Engelking and M. Karłowicz, Some theorems of set theory and their topological consequences, Fund. Math. 57 (1965), 275-285. Zbl0137.41904
- [3] M. Gitik and S. Shelah, On densities of free products, Topology Appl. 88 (1998), 219-238. Zbl0926.03060
- [4] A. Hajnal, I. Juhász and S. Shelah, Splitting strongly almost disjoint families, Trans. Amer. Math. Soc. 295 (1986), 369-387. Zbl0619.03033
- [5] A. Hajnal, I. Juhász and Z. Szentmiklóssy, On the structure of CCC partial orders, Algebra Universalis, to appear. Zbl0938.06001
- [6] R. B. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229-308. Zbl0257.02035
- [7] A. Kanamori and M. Magidor, The evolution of large cardinal axioms in set theory, in: Higher Set Theory, Lecture Notes in Math. 669, Springer, 1978, 99-275. Zbl0381.03038
- [8] J. P. Levinski, M. Magidor and S. Shelah, Chang’s conjecture for , Israel J. Math. 69 (1990), 161-172.
- [9] M. Magidor and S. Shelah, When does almost free imply free? (For groups, transversal etc.), J. Amer. Math. Soc. 7 (1994), 769-830. Zbl0819.20059
- [10] D. Monk, Cardinal Invariants of Boolean Algebras, Lectures in Mathematics, ETH Zurich, Birkhäuser, Basel, 1990.
- [11] D. Monk, Cardinal Invariants of Boolean Algebras, Progr. Math., Birkhäuser, Basel, 1996. Zbl0849.03038
- [12] S. Shelah, Categoricity of an abstract elementary class in two successive cardinals, Israel J. Math. accepted;. math.LO/9805146. Zbl0999.03030
- [13] S. Shelah, PCF and infinite free subsets, Arch. Math. Logic, accepted; math.LO/9807177.
- [14] S. Shelah, Remarks on Boolean algebras, Algebra Universalis 11 (1980), 77-89. Zbl0451.06015
- [15] S. Shelah, Simple unstable theories, Ann. Math. Logic 19 (1980), 177-203. Zbl0489.03008
- [16] S. Shelah, On saturation for a predicate, Notre Dame J. Formal Logic 22 (1981), 239-248. Zbl0497.03022
- [17] S. Shelah, Products of regular cardinals and cardinal invariants of products of Boolean algebras, Israel J. Math. 70 (1990), 129-187. Zbl0722.03038
- [18] S. Shelah, Advances in Cardinal Arithmetic, in: Finite and Infinite Combinatorics in Sets and Logic, N. W. Sauer et al. (eds.), Kluwer, 1993, 355-383. Zbl0844.03028
- [19] S. Shelah, More on cardinal arithmetic, Arch. Math. Logic 32 (1993), 399-428. Zbl0799.03052
- [20] S. Shelah, has a Jonsson algebra, Chapter II of [20].
- [21] S. Shelah, Basic: Cofinalities of small reduced products, Chapter I of [20].
- [22] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides 29, Oxford Univ. Press, 1994.
- [23] S. Shelah, Further cardinal arithmetic, Israel J. Math. 95 (1996), 61-114; math. LO/9610226. Zbl0864.03032
- [24] S. Shelah, Colouring and non-productivity of -cc, Ann. Pure Appl. Logic 84 (1997), 153-174; math.LO/9609218.
- [25] S. Shelah, The Generalized Continuum Hypothesis revisited, Israel J. Math. 116 (2000), 285-321; math.LO/9809200. Zbl0955.03054
- [26] R. M.Solovay, Strongly compact cardinals and the GCH, in: Proc. Tarski Symposium (Berkeley, 1971), Proc. Sympos. Pure Math. 25, Amer. Math. Soc., 1974, 365-372.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.