# A new proof of Lusin's theorem

Fundamenta Mathematicae (1927)

- Volume: 9, Issue: 1, page 122-123
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topCohen, Leon. "A new proof of Lusin's theorem." Fundamenta Mathematicae 9.1 (1927): 122-123. <http://eudml.org/doc/215123>.

@article{Cohen1927,

abstract = {The purpose of this paper is to give a new proof of the following Lusin's theorem: Théorème: If f(x) is a measurable function defined on the interval I: 0 ≤ x ≤ 1, then for every ϵ > 0 there is a set A ⊂ I such that f(x) is continuous on A and m(I-A) < ϵ.},

author = {Cohen, Leon},

journal = {Fundamenta Mathematicae},

keywords = {funkcja mierzalna; twierdzenie Lusina; analiza matematyczna; funkcja ciągła},

language = {eng},

number = {1},

pages = {122-123},

title = {A new proof of Lusin's theorem},

url = {http://eudml.org/doc/215123},

volume = {9},

year = {1927},

}

TY - JOUR

AU - Cohen, Leon

TI - A new proof of Lusin's theorem

JO - Fundamenta Mathematicae

PY - 1927

VL - 9

IS - 1

SP - 122

EP - 123

AB - The purpose of this paper is to give a new proof of the following Lusin's theorem: Théorème: If f(x) is a measurable function defined on the interval I: 0 ≤ x ≤ 1, then for every ϵ > 0 there is a set A ⊂ I such that f(x) is continuous on A and m(I-A) < ϵ.

LA - eng

KW - funkcja mierzalna; twierdzenie Lusina; analiza matematyczna; funkcja ciągła

UR - http://eudml.org/doc/215123

ER -

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.