A multiplier theorem for H-type groups

Rita Pini

Studia Mathematica (1991)

  • Volume: 100, Issue: 1, page 39-49
  • ISSN: 0039-3223

Abstract

top
We prove an L p -boundedness result for a convolution operator with rough kernel supported on a hyperplane of a group of Heisenberg type.

How to cite

top

Pini, Rita. "A multiplier theorem for H-type groups." Studia Mathematica 100.1 (1991): 39-49. <http://eudml.org/doc/215872>.

@article{Pini1991,
abstract = {We prove an $L^p$-boundedness result for a convolution operator with rough kernel supported on a hyperplane of a group of Heisenberg type.},
author = {Pini, Rita},
journal = {Studia Mathematica},
keywords = {multipliers; singular integrals; Heisenberg group; -boundedness; convolution operators},
language = {eng},
number = {1},
pages = {39-49},
title = {A multiplier theorem for H-type groups},
url = {http://eudml.org/doc/215872},
volume = {100},
year = {1991},
}

TY - JOUR
AU - Pini, Rita
TI - A multiplier theorem for H-type groups
JO - Studia Mathematica
PY - 1991
VL - 100
IS - 1
SP - 39
EP - 49
AB - We prove an $L^p$-boundedness result for a convolution operator with rough kernel supported on a hyperplane of a group of Heisenberg type.
LA - eng
KW - multipliers; singular integrals; Heisenberg group; -boundedness; convolution operators
UR - http://eudml.org/doc/215872
ER -

References

top
  1. [1] J. Bergh and J. Löfström, Interpolation Spaces, Springer, 1976. Zbl0344.46071
  2. [2] M. Christ, Hilbert transforms along curves. I. Nilpotent groups, Ann. of Math. 122 (1985), 575-596. Zbl0593.43011
  3. [3] R. R. Coifman and G. Weiss, Transference methods in harmonic analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., 1977. Zbl0371.43009
  4. [4] M. Cowling, A remark on twisted convolution, Suppl. Rend. Circ. Mat. Palermo 1 (1981). 203 209 
  5. [5] J. Cygan, Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc. 83 (1981), 69-70. Zbl0475.43010
  6. [6] I. M. Gelfand and G. E. Shilov, Generalized Function I, Academic Press, 1964. 
  7. [7] D. Geller and E. M. Stein, Estimates for singular convolution operators on the Heisenberg group, Math. Ann. 267 (1984), 1-15. Zbl0537.43005
  8. [8] R. Goodman, Singular integral operators on nilpotent Lie groups, Ark. Mat. 18 (1980), 1-11. Zbl0449.43008
  9. [9] K. Hoffman and R. Kunze, Linear Algebra, Prentice-Hall, 1961. 
  10. [10] R. Howe, Quantum mechanics and partial differential operators, J. Funct. Anal. 38 (1980), 188-254. Zbl0449.35002
  11. [11] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147-153. Zbl0393.35015
  12. [12] A. Kaplan and F. Ricci, Harmonic analysis on groups of Heisenberg type, in: Lecture Notes in Math. 992, Springer, 1983, 416-435. 
  13. [13] D. Müller, Calderón-Zygmund kernels carried by linear subspaces of homogeneous nilpotent Lie algebras, invent. Math. 73 (1983), 467-489. Zbl0521.43009
  14. [14] D. Müller, Singular kernels supported by homogeneous submanifolds, J. Reine Angew. Math. 356 (1985), 90-118. Zbl0551.43005
  15. [15] F. Ricci, Calderón-Zygmund kernels on nilpotent Lie groups, in: Lecture Notes in Math. 908, Springer, 1982, 217-227. 
  16. [16] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179-194. Zbl0622.42010
  17. [17] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. II. Singular kernels supported on submanifolds, ibid. 78 (1988), 56-84. Zbl0645.42019
  18. [18] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups. III. Fractional integration along manifolds, ibid. 86 (1989), 360-389. Zbl0684.22006
  19. [19] E. M. Stein and S. Wainger, Problems In harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295. Zbl0393.42010
  20. [20] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton 1975. Zbl0232.42007
  21. [21] R. Strichartz, Singular integrals on nilpotent Lie groups, Proc. Amer. Math. Soc. 53 (1975), 367-374. Zbl0322.43015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.