A model for some analytic Toeplitz operators
Studia Mathematica (1991)
- Volume: 100, Issue: 1, page 81-86
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. B. Abrahamse and R. G. Douglas, A class of subnormal operators related to multiply connected domains, Adv. in Math. 19 (1976), 106-148. Zbl0321.47019
- [2] M. B. Abrahamse and T. Kriete, The spectral multiplicity of a multiplication operator, Indiana Univ. Math. J. 22 (1973), 845-857. Zbl0259.47031
- [3] J. B. Conway, Spectral properties of certain operators on Hardy spaces of domains, Integral Equations Operator Theory 10 (1987), 659-706. Zbl0658.47028
- [4] C. C. Cowen, On equivalence of Teoplitz operators, J. Operator Theory 7 (1982), 167-172. Zbl0489.47012
- [5] H. Helson, Lectures on Invariant Subspaces, Academic Press, 1964.
- [6] R. F. Olin, Functional relationships between a subnormal operator and its minimal normal extension, Pacific J. Math. 63 (1976), 221-229. Zbl0323.47018
- [7] K. Rudol, Spectral mapping theorems for analytic functional calculi, in: Operator Theory: Adv. Appl. 17, Birkhäuser, 1986, 331-340.
- [8] K. Rudol, The generalised Wold Decomposition for subnormal operators, Integral Equations Operator Theory 11 (1988), 420-436. Zbl0645.47021
- [9] K. Rudol, On the bundle shifts and cluster sets, ibid. 12 (1989), 444-448. Zbl0685.47024
- [10] J. Spraker, The minimal normal extensions for on the Hardy space of a planar region, Trans. Amer. Math. Soc. 318 (1990), 57-67. Zbl0704.47019
- [11] D. V. Yakubovich, Riemann surface models of Toeplitz operators, in: Operator Theory: Adv. Appl. 42, Birkhäuser, 1989, 305-415.