Hölder continuity of proper holomorphic mappings
Studia Mathematica (1991)
- Volume: 100, Issue: 3, page 229-235
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBerteloot, François. "Hölder continuity of proper holomorphic mappings." Studia Mathematica 100.3 (1991): 229-235. <http://eudml.org/doc/215885>.
@article{Berteloot1991,
abstract = {We prove the Hölder continuity for proper holomorphic mappings onto certain piecewise smooth pseudoconvex domains with "good" plurisubharmonic peak functions at each point of their boundaries. We directly obtain a quite precise estimate for the exponent from an attraction property for analytic disks. Moreover, this way does not require any consideration of infinitesimal metric.},
author = {Berteloot, François},
journal = {Studia Mathematica},
keywords = {proper holomorphic mappings; Hölder continuity; plurisubharmonic peak functions; proper holomorphic maps; piecewise smooth domains},
language = {eng},
number = {3},
pages = {229-235},
title = {Hölder continuity of proper holomorphic mappings},
url = {http://eudml.org/doc/215885},
volume = {100},
year = {1991},
}
TY - JOUR
AU - Berteloot, François
TI - Hölder continuity of proper holomorphic mappings
JO - Studia Mathematica
PY - 1991
VL - 100
IS - 3
SP - 229
EP - 235
AB - We prove the Hölder continuity for proper holomorphic mappings onto certain piecewise smooth pseudoconvex domains with "good" plurisubharmonic peak functions at each point of their boundaries. We directly obtain a quite precise estimate for the exponent from an attraction property for analytic disks. Moreover, this way does not require any consideration of infinitesimal metric.
LA - eng
KW - proper holomorphic mappings; Hölder continuity; plurisubharmonic peak functions; proper holomorphic maps; piecewise smooth domains
UR - http://eudml.org/doc/215885
ER -
References
top- [1] H. Alexander, Proper holomorphic mappings in , Indiana Univ. Math. J. 26 (1977), 137-146. Zbl0391.32015
- [2] E. Bedford and J. E. Fornæ ss, Biholomorphic maps of weakly pseudoconvex domains, Duke Math. J. 45 (1978), 711-749.
- [3] K. Diederich and J. E. Fornæ ss, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), 129-141. Zbl0353.32025
- [4] K. Diederich and J. E. Fornæ ss, Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary, Ann. of Math. (2) 110 (1979), 575-592. Zbl0394.32012
- [5] F. Forstneric and J.-P. Rosay, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279 (1987), 239-252. Zbl0644.32013
- [6] J. E. Fornæ ss and N. Sibony, Construction of p.s.h. functions on weakly pseudoconvex domains, Duke Math. J. 58 (1989), 633-655.
- [7] J. E. Fornæ ss and B. Stensønes, Lectures on Counterexamples in Several Complex Variables, Math. Notes 33, Princeton Univ. Press, 1987.
- [8] G. M. Henkin, An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain, Soviet. Math. Dokl. 14 (1973), 858-862. Zbl0288.32015
- [9] M. Hervé, Les fonctions analytiques, Presses Univ. de France, 1982.
- [10] G. A. Margulis, Boundary correspondence under biholomorphic mappings of multivariate domains, in: Abstracts of the All-Union Conf. on the Theory of Functions of Several Complex Variables, Kharkov 1971, 137-138.
- [11] S. I. Pinchuk, Holomorphic maps in and the problem of holomorphic equivalence, in: Several Complex Variables, Encyclopaedia Math. Sci. 19, Springer, 1989, 173-201.
- [12] R. M. Range, On the topological extension to the boundary of biholomorphic maps in , Trans. Amer. Math. Soc. 216 (1976), 203-216. Zbl0313.32034
- [13] N. Vormoor, Topologische Fortsetzung biholomorpher Funktionen auf dem Rande bei beschränkten streng-pseudokonvexen Gebieten im mit -Rand, Math. Ann. 204 (1973), 239-261. Zbl0259.32006
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.