Hölder continuity of proper holomorphic mappings

François Berteloot

Studia Mathematica (1991)

  • Volume: 100, Issue: 3, page 229-235
  • ISSN: 0039-3223

Abstract

top
We prove the Hölder continuity for proper holomorphic mappings onto certain piecewise smooth pseudoconvex domains with "good" plurisubharmonic peak functions at each point of their boundaries. We directly obtain a quite precise estimate for the exponent from an attraction property for analytic disks. Moreover, this way does not require any consideration of infinitesimal metric.

How to cite

top

Berteloot, François. "Hölder continuity of proper holomorphic mappings." Studia Mathematica 100.3 (1991): 229-235. <http://eudml.org/doc/215885>.

@article{Berteloot1991,
abstract = {We prove the Hölder continuity for proper holomorphic mappings onto certain piecewise smooth pseudoconvex domains with "good" plurisubharmonic peak functions at each point of their boundaries. We directly obtain a quite precise estimate for the exponent from an attraction property for analytic disks. Moreover, this way does not require any consideration of infinitesimal metric.},
author = {Berteloot, François},
journal = {Studia Mathematica},
keywords = {proper holomorphic mappings; Hölder continuity; plurisubharmonic peak functions; proper holomorphic maps; piecewise smooth domains},
language = {eng},
number = {3},
pages = {229-235},
title = {Hölder continuity of proper holomorphic mappings},
url = {http://eudml.org/doc/215885},
volume = {100},
year = {1991},
}

TY - JOUR
AU - Berteloot, François
TI - Hölder continuity of proper holomorphic mappings
JO - Studia Mathematica
PY - 1991
VL - 100
IS - 3
SP - 229
EP - 235
AB - We prove the Hölder continuity for proper holomorphic mappings onto certain piecewise smooth pseudoconvex domains with "good" plurisubharmonic peak functions at each point of their boundaries. We directly obtain a quite precise estimate for the exponent from an attraction property for analytic disks. Moreover, this way does not require any consideration of infinitesimal metric.
LA - eng
KW - proper holomorphic mappings; Hölder continuity; plurisubharmonic peak functions; proper holomorphic maps; piecewise smooth domains
UR - http://eudml.org/doc/215885
ER -

References

top
  1. [1] H. Alexander, Proper holomorphic mappings in C n , Indiana Univ. Math. J. 26 (1977), 137-146. Zbl0391.32015
  2. [2] E. Bedford and J. E. Fornæ ss, Biholomorphic maps of weakly pseudoconvex domains, Duke Math. J. 45 (1978), 711-749. 
  3. [3] K. Diederich and J. E. Fornæ ss, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), 129-141. Zbl0353.32025
  4. [4] K. Diederich and J. E. Fornæ ss, Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary, Ann. of Math. (2) 110 (1979), 575-592. Zbl0394.32012
  5. [5] F. Forstneric and J.-P. Rosay, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279 (1987), 239-252. Zbl0644.32013
  6. [6] J. E. Fornæ ss and N. Sibony, Construction of p.s.h. functions on weakly pseudoconvex domains, Duke Math. J. 58 (1989), 633-655. 
  7. [7] J. E. Fornæ ss and B. Stensønes, Lectures on Counterexamples in Several Complex Variables, Math. Notes 33, Princeton Univ. Press, 1987. 
  8. [8] G. M. Henkin, An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain, Soviet. Math. Dokl. 14 (1973), 858-862. Zbl0288.32015
  9. [9] M. Hervé, Les fonctions analytiques, Presses Univ. de France, 1982. 
  10. [10] G. A. Margulis, Boundary correspondence under biholomorphic mappings of multivariate domains, in: Abstracts of the All-Union Conf. on the Theory of Functions of Several Complex Variables, Kharkov 1971, 137-138. 
  11. [11] S. I. Pinchuk, Holomorphic maps in C n and the problem of holomorphic equivalence, in: Several Complex Variables, Encyclopaedia Math. Sci. 19, Springer, 1989, 173-201. 
  12. [12] R. M. Range, On the topological extension to the boundary of biholomorphic maps in C n , Trans. Amer. Math. Soc. 216 (1976), 203-216. Zbl0313.32034
  13. [13] N. Vormoor, Topologische Fortsetzung biholomorpher Funktionen auf dem Rande bei beschränkten streng-pseudokonvexen Gebieten im C n mit C -Rand, Math. Ann. 204 (1973), 239-261. Zbl0259.32006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.