Pseudocomplémentation dans les espaces de Banach

Patric Rauch

Studia Mathematica (1991)

  • Volume: 100, Issue: 3, page 251-282
  • ISSN: 0039-3223

Abstract

top
This paper introduces the following definition: a closed subspace Z of a Banach space E is pseudocomplemented in E if for every linear continuous operator u from Z to Z there is a linear continuous extension ū of u from E to E. For instance, every subspace complemented in E is pseudocomplemented in E. First, the pseudocomplemented hilbertian subspaces of L ¹ are characterized and, in L p with p in [1, + ∞[, classes of closed subspaces in which the notions of complementation and pseudocomplementation are equivalent are pointed out. Then, for Banach spaces with the uniform approximation property, Dvoretzky’s theorem is strengthened by proving that they contain uniformly pseudocomplemented n 2 ’s. Finally, the study of Banach spaces in which every closed subspace is pseudocomplemented is started.

How to cite

top

Rauch, Patric. "Pseudocomplémentation dans les espaces de Banach." Studia Mathematica 100.3 (1991): 251-282. <http://eudml.org/doc/215887>.

@article{Rauch1991,
author = {Rauch, Patric},
journal = {Studia Mathematica},
keywords = {pseudocomplemented subspaces in a Banach space; constant of pseudocomplementedness; independent stochastic Gaussian variables; theorem of Dvoretzky type; spaces with uniform approximation property},
language = {fre},
number = {3},
pages = {251-282},
title = {Pseudocomplémentation dans les espaces de Banach},
url = {http://eudml.org/doc/215887},
volume = {100},
year = {1991},
}

TY - JOUR
AU - Rauch, Patric
TI - Pseudocomplémentation dans les espaces de Banach
JO - Studia Mathematica
PY - 1991
VL - 100
IS - 3
SP - 251
EP - 282
LA - fre
KW - pseudocomplemented subspaces in a Banach space; constant of pseudocomplementedness; independent stochastic Gaussian variables; theorem of Dvoretzky type; spaces with uniform approximation property
UR - http://eudml.org/doc/215887
ER -

References

top
  1. [B-D-G-J-N] G. Bennnett, L. E. Dor, V. Goodman, W. B. Johnson, and C. M. Newman, On uncomplemented subspaces of L p , 1 < p < 2, Israel. J. Math. 26 (1977), 178-187. 
  2. [BOU 1] J. Bourgain, New Classes of p -Spaces, Lecture Notes in Math. 889, Springer, 1981. 
  3. [BOU 2] J. Bourgain, Bounded orthogonal systems and the Λ(p)-set problem, Acta Math. 162 (1989), 227-245. 
  4. [D-D-S] W. J. Davis, D. W. Dean and I. Singer, Complemented subspaces and Λ-systems in Banach spaces, Israel J. Math. 6 (1968), 303-309. 
  5. [DAY] M. M. Day, On the basis problem in normed spaces, Proc. Amer. Math. Soc. 13 (1962), 655-658. Zbl0109.33601
  6. [DOR] L. E. Dor, On projections in L 1 , Ann. of Math. 102 (1975), 463-474. Zbl0314.46027
  7. [D-S] L. E. Dor and T. Starbird, Projections of L p onto subspaces spanned by independent random variables, Compositio Math. 39 (2) (1979), 141-175. Zbl0382.60011
  8. [DUR] P. L. Duren, Theory of H p Spaces, Academic Press, New York 1970. 
  9. [DVO] A. Dvoretzky, Some results on convex bodies and Banach spaces, in : Proc. Internat. Sympos. Linear Spaces, Jerusalem 1960, Israel Acad. Sci. Humanities, Jerusalem 1961, 123-160. 
  10. [FIG] T. Figiel, The exponential estimate for local structure of gaussian subspaces of L p , Bull. Polish Acad. Sci. Math. 36 (3-4) (1988), 133-141. 
  11. [F-J-S] T. Figiel, W. B. Johnson and G. Schechtman, Factorization of natural embeddings of l p n into L r , I, Studia Math. 89 (1988), 79-103. 
  12. [F-L-M] T. Figiel, J. Lindenstrauss and V. Milman, The dimensions of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53-94. Zbl0375.52002
  13. [HOF] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N.J., 1962. 
  14. [LEVY] M. Levy, Prolongement d'un opérateur d'un sous-espace de L¹(μ) dans L¹(ν), Séminaire Maurey-Schwartz, 1979-80, exposé 5, Ecole Polytechnique, Paris. 
  15. [L-R] J. Lindenstrauss and H. P. Rosenthal, The p -spaces, Israel J. Math. 7 (1969), 325-349. Zbl0205.12602
  16. [Ló-R] J. López and K. Ross, Sidon Sets, Dekker, New York 1975. 
  17. [L-T 1 et 2] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I : Sequence Spaces, II : Function Spaces, Springer, Berlin 1977, 1979. Zbl0362.46013
  18. [L-T 3] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Lecture Notes in Math. 338, Springer, 1973. Zbl0259.46011
  19. [L-T 4] J. Lindenstrauss and L. Tzafriri, On the complemented subspace problem, Israel J. Math. 9 (1971), 263-269. Zbl0211.16301
  20. [Mar-P] M. B. Marcus and G. Pisier, Random Fourier Series with Applications to Harmonic Analysis, Ann. of Math. Stud. 101, Princeton Univ. Press, 1981. Zbl0474.43004
  21. [Mau-P] B. Maurey et G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45-90. 
  22. [PEŁ] A. Pełczyński, Projections in certain Banach spaces, ibid. 19 (1960), 209-228. Zbl0104.08503
  23. [PIE] A. Pietsch, Operator Ideals, North-Holland, 1978. 
  24. [PIS 1] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Ser. in Math. 60, Amer. Math. Soc., 1986. 
  25. [PIS 2] G. Pisier, Probabilistic methods in the geometry of Banach spaces, in: Probability and Analysis, C.I.M.E. Varenna 1985, Lecture Notes in Math. 1206, Springer, 1986, 167-241. 
  26. [PIS 3] G. Pisier, Holomorphic semi-groups and the geometry of Banach spaces, Ann. of Math. 115 (1982), 375-392. Zbl0487.46008
  27. [PIS 4] G. Pisier, Bases, suites lacunaires dans les espaces L r d’après Kadec-Pełczyński, Séminaire Maurey-Schwartz, 1972-73, exposé 18, Ecole Polytechnique, Paris. 
  28. [PIS 5] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Univ. Press, 1989. 
  29. [PIS 6] G. Pisier, Les inégalités de Khintchine-Kahane d'après C. Borell, Séminaire sur la géométrie des espaces de Banach, 1977-78, n° 7, Ecole Polytechnique, Palaiseau. 
  30. [ROS 1] H. P. Rosenthal, Projections onto translation-invariant subspaces of L p ( G ) , Mem. Amer. Math. Soc. 63 (1966). 
  31. [ROS 2] H. P. Rosenthal, On the subspaces of L p ( p > 2 ) spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303. Zbl0213.19303
  32. [SIM] B. Simon, The P ( ϕ ) 2 Euclidean (Quantum) Field Theory, Princeton Univ. Press, Princeton 1974. 
  33. [T-J] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Longman Scientific & Technical, 1989. Zbl0721.46004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.