A strong mixing condition for second-order stationary random fields
Studia Mathematica (1992)
- Volume: 101, Issue: 2, page 139-153
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topCheng, Raymond. "A strong mixing condition for second-order stationary random fields." Studia Mathematica 101.2 (1992): 139-153. <http://eudml.org/doc/215897>.
@article{Cheng1992,
abstract = {Let $\{X_\{mn\}\}$ be a second-order stationary random field on Z². Let ℳ(L) be the linear span of $\{X_\{mn\}: m ≤ 0, n ∈ Z\}$, and ℳ(RN) the linear span of $\{X_\{mn\}: m ≥ N, n ∈ Z\}$. Spectral criteria are given for the condition $lim_\{N→∞\} c_N = 0$, where $c_N$ is the cosine of the angle between ℳ(L) and $ℳ(R_N)$.},
author = {Cheng, Raymond},
journal = {Studia Mathematica},
keywords = {stationary random field; prediction theory; strong mixing; spectral criteria},
language = {eng},
number = {2},
pages = {139-153},
title = {A strong mixing condition for second-order stationary random fields},
url = {http://eudml.org/doc/215897},
volume = {101},
year = {1992},
}
TY - JOUR
AU - Cheng, Raymond
TI - A strong mixing condition for second-order stationary random fields
JO - Studia Mathematica
PY - 1992
VL - 101
IS - 2
SP - 139
EP - 153
AB - Let ${X_{mn}}$ be a second-order stationary random field on Z². Let ℳ(L) be the linear span of ${X_{mn}: m ≤ 0, n ∈ Z}$, and ℳ(RN) the linear span of ${X_{mn}: m ≥ N, n ∈ Z}$. Spectral criteria are given for the condition $lim_{N→∞} c_N = 0$, where $c_N$ is the cosine of the angle between ℳ(L) and $ℳ(R_N)$.
LA - eng
KW - stationary random field; prediction theory; strong mixing; spectral criteria
UR - http://eudml.org/doc/215897
ER -
References
top- [1] R. Cheng, The spectral measure of a regular stationary random field with the weak or strong commutation property, preprint. Zbl0790.60038
- [2] R. Cheng, Strong mixing in stationary fields, Ph.D. dissertation, University of Virginia, 1989.
- [3] P. L. Duren, Theory of Spaces, Academic Press, New York 1970. Zbl0215.20203
- [4] H. Dym and H. P. McKean, Gaussian Processes, Function Theory, and the Inverse Spectral Problem, Academic Press, New York 1976.
- [5] U. Grenander and G. Szegö, Toeplitz Forms and Their Application, University of California Press, 1958. Zbl0080.09501
- [6] E. Hayashi, The spectral density of a strongly mixing stationary Gaussian process, Pacific J. Math. 96 (1981), 343-359. Zbl0472.60039
- [7] H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables, I, Acta Math. 99 (1958), 165-202. Zbl0082.28201
- [8] H. Helson and D. Sarason, Past and future, Math. Scand. 21 (1967), 5-16.
- [9] H. Helson and G. Szegö, A problem in prediction theory, Ann. Mat. Pura Appl. 51 (1960), 107-138. Zbl0178.50002
- [10] I. A. Ibragimov, On the spectrum of stationary Gaussian sequences satisfying the strong mixing condition, Theory Probab. Appl. 10 (1965), 85-106; 15 (1970), 24-37. Zbl0131.18101
- [11] I. A. Ibragimov and V. N. Solev, A condition for the regularity of a Gaussian stationary process, Soviet Math. Dokl. 10 (1969), 371-375. Zbl0188.23403
- [12] G. Kallianpur, A. G. Miamee and H. Niemi, On the prediction theory of two-parameter stationary random fields, technical report No. 178, Center for Stochastic Processes, University of North Carolina, 1987. Zbl0726.60051
- [13] H. Korezlioglu et P. Loubaton, Prédiction des processus stationnaires au sense large sur Z² relativement aux demi-plans, C. R. Acad. Sci. Paris Sér. I 301 (1) (1985), 27-30. Zbl0583.60032
- [14] A. Makagon and H. Salehi, Stationary fields with positive angle, J. Multivariate Anal. 22 (1987), 106-125. Zbl0622.60051
- [15] A. G. Miamee and H. Niemi, On the angle for stationary random fields, technical report No. 92, Department of Statistics, University of North Carolina at Chapel Hill, 1985. Zbl0805.60046
- [16] T. Nakazi, The commutator of two projections in prediction theory, Bull. Austral. Math. Soc. 34 (1986), 65-71. Zbl0595.47028
- [17] T. Nakazi and K. Takahashi, Prediction n units of time ahead, Proc. Amer. Math. Soc. 80 (1980), 658-659. Zbl0405.60042
- [18] V. V. Peller and S. V. Khrushchev, Hankel operators, best approximations, and stationary Gaussian processes, Russian Math. Surveys 37 (1982), 61-144. Zbl0505.60043
- [19] Yu. A. Rozanov, On Gaussian fields with given conditional distributions, Theory Probab. Appl. 12 (1967), 381-391.
- [20] D. Sarason, An addendum to 'Past and future', Math. Scand. 30 (1972), 62-64. Zbl0266.60023
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.