A strong mixing condition for second-order stationary random fields

Raymond Cheng

Studia Mathematica (1992)

  • Volume: 101, Issue: 2, page 139-153
  • ISSN: 0039-3223

Abstract

top
Let X m n be a second-order stationary random field on Z². Let ℳ(L) be the linear span of X m n : m 0 , n Z , and ℳ(RN) the linear span of X m n : m N , n Z . Spectral criteria are given for the condition l i m N c N = 0 , where c N is the cosine of the angle between ℳ(L) and ( R N ) .

How to cite

top

Cheng, Raymond. "A strong mixing condition for second-order stationary random fields." Studia Mathematica 101.2 (1992): 139-153. <http://eudml.org/doc/215897>.

@article{Cheng1992,
abstract = {Let $\{X_\{mn\}\}$ be a second-order stationary random field on Z². Let ℳ(L) be the linear span of $\{X_\{mn\}: m ≤ 0, n ∈ Z\}$, and ℳ(RN) the linear span of $\{X_\{mn\}: m ≥ N, n ∈ Z\}$. Spectral criteria are given for the condition $lim_\{N→∞\} c_N = 0$, where $c_N$ is the cosine of the angle between ℳ(L) and $ℳ(R_N)$.},
author = {Cheng, Raymond},
journal = {Studia Mathematica},
keywords = {stationary random field; prediction theory; strong mixing; spectral criteria},
language = {eng},
number = {2},
pages = {139-153},
title = {A strong mixing condition for second-order stationary random fields},
url = {http://eudml.org/doc/215897},
volume = {101},
year = {1992},
}

TY - JOUR
AU - Cheng, Raymond
TI - A strong mixing condition for second-order stationary random fields
JO - Studia Mathematica
PY - 1992
VL - 101
IS - 2
SP - 139
EP - 153
AB - Let ${X_{mn}}$ be a second-order stationary random field on Z². Let ℳ(L) be the linear span of ${X_{mn}: m ≤ 0, n ∈ Z}$, and ℳ(RN) the linear span of ${X_{mn}: m ≥ N, n ∈ Z}$. Spectral criteria are given for the condition $lim_{N→∞} c_N = 0$, where $c_N$ is the cosine of the angle between ℳ(L) and $ℳ(R_N)$.
LA - eng
KW - stationary random field; prediction theory; strong mixing; spectral criteria
UR - http://eudml.org/doc/215897
ER -

References

top
  1. [1] R. Cheng, The spectral measure of a regular stationary random field with the weak or strong commutation property, preprint. Zbl0790.60038
  2. [2] R. Cheng, Strong mixing in stationary fields, Ph.D. dissertation, University of Virginia, 1989. 
  3. [3] P. L. Duren, Theory of H p Spaces, Academic Press, New York 1970. Zbl0215.20203
  4. [4] H. Dym and H. P. McKean, Gaussian Processes, Function Theory, and the Inverse Spectral Problem, Academic Press, New York 1976. 
  5. [5] U. Grenander and G. Szegö, Toeplitz Forms and Their Application, University of California Press, 1958. Zbl0080.09501
  6. [6] E. Hayashi, The spectral density of a strongly mixing stationary Gaussian process, Pacific J. Math. 96 (1981), 343-359. Zbl0472.60039
  7. [7] H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables, I, Acta Math. 99 (1958), 165-202. Zbl0082.28201
  8. [8] H. Helson and D. Sarason, Past and future, Math. Scand. 21 (1967), 5-16. 
  9. [9] H. Helson and G. Szegö, A problem in prediction theory, Ann. Mat. Pura Appl. 51 (1960), 107-138. Zbl0178.50002
  10. [10] I. A. Ibragimov, On the spectrum of stationary Gaussian sequences satisfying the strong mixing condition, Theory Probab. Appl. 10 (1965), 85-106; 15 (1970), 24-37. Zbl0131.18101
  11. [11] I. A. Ibragimov and V. N. Solev, A condition for the regularity of a Gaussian stationary process, Soviet Math. Dokl. 10 (1969), 371-375. Zbl0188.23403
  12. [12] G. Kallianpur, A. G. Miamee and H. Niemi, On the prediction theory of two-parameter stationary random fields, technical report No. 178, Center for Stochastic Processes, University of North Carolina, 1987. Zbl0726.60051
  13. [13] H. Korezlioglu et P. Loubaton, Prédiction des processus stationnaires au sense large sur Z² relativement aux demi-plans, C. R. Acad. Sci. Paris Sér. I 301 (1) (1985), 27-30. Zbl0583.60032
  14. [14] A. Makagon and H. Salehi, Stationary fields with positive angle, J. Multivariate Anal. 22 (1987), 106-125. Zbl0622.60051
  15. [15] A. G. Miamee and H. Niemi, On the angle for stationary random fields, technical report No. 92, Department of Statistics, University of North Carolina at Chapel Hill, 1985. Zbl0805.60046
  16. [16] T. Nakazi, The commutator of two projections in prediction theory, Bull. Austral. Math. Soc. 34 (1986), 65-71. Zbl0595.47028
  17. [17] T. Nakazi and K. Takahashi, Prediction n units of time ahead, Proc. Amer. Math. Soc. 80 (1980), 658-659. Zbl0405.60042
  18. [18] V. V. Peller and S. V. Khrushchev, Hankel operators, best approximations, and stationary Gaussian processes, Russian Math. Surveys 37 (1982), 61-144. Zbl0505.60043
  19. [19] Yu. A. Rozanov, On Gaussian fields with given conditional distributions, Theory Probab. Appl. 12 (1967), 381-391. 
  20. [20] D. Sarason, An addendum to 'Past and future', Math. Scand. 30 (1972), 62-64. Zbl0266.60023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.