Minimal incomplete norms on Banach algebras

Michael Meyer

Studia Mathematica (1992)

  • Volume: 102, Issue: 1, page 77-85
  • ISSN: 0039-3223

Abstract

top
We study the family of all not necessarily complete algebra norms on a semisimple Banach algebra as a partially ordered set and investigate the existence and properties of minimal elements.

How to cite

top

Meyer, Michael. "Minimal incomplete norms on Banach algebras." Studia Mathematica 102.1 (1992): 77-85. <http://eudml.org/doc/215915>.

@article{Meyer1992,
abstract = {We study the family of all not necessarily complete algebra norms on a semisimple Banach algebra as a partially ordered set and investigate the existence and properties of minimal elements.},
author = {Meyer, Michael},
journal = {Studia Mathematica},
keywords = {Banach algebras; norms; spectral radius; algebra norms on a semisimple Banach algebra; existence and properties of minimal elements},
language = {eng},
number = {1},
pages = {77-85},
title = {Minimal incomplete norms on Banach algebras},
url = {http://eudml.org/doc/215915},
volume = {102},
year = {1992},
}

TY - JOUR
AU - Meyer, Michael
TI - Minimal incomplete norms on Banach algebras
JO - Studia Mathematica
PY - 1992
VL - 102
IS - 1
SP - 77
EP - 85
AB - We study the family of all not necessarily complete algebra norms on a semisimple Banach algebra as a partially ordered set and investigate the existence and properties of minimal elements.
LA - eng
KW - Banach algebras; norms; spectral radius; algebra norms on a semisimple Banach algebra; existence and properties of minimal elements
UR - http://eudml.org/doc/215915
ER -

References

top
  1. [1] B. Aupetit, The uniqueness of the complete norm topology in Banach algebras and Banach Jordan algebras, J. Funct. Anal. 47 (1982), 1-6. Zbl0488.46043
  2. [2] F. F. Bonsall, A minimal property of the norm in some Banach algebras, J. London Math. Soc. 29 (1954), 156-164. 
  3. [3] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin 1973. Zbl0271.46039
  4. [4] S. B. Cleveland, Homomorphisms of non-commutative *-algebras, Pacific J. Math. 13 (1963), 1097-1109. Zbl0205.42203
  5. [5] J. Esterle, Normes d'algèbres minimales, topologie d'algèbre normée minimum sur certaines algèbres d'endomorphismes continus d'un espace normé, C. R. Acad. Sci. Paris Sér. A 277 (1973), 425-427. Zbl0268.46045
  6. [6] M. J. Meyer, Minimal norms on SQDZ-Banach algebras, Proc. Roy. Irish Acad. 89A (1989), 127-133. Zbl0665.46041
  7. [7] M. J. Meyer, The spectral extension property and extension of multiplicative linear functionals, Proc. Amer. Math. Soc. 112 (1991), 855-861. Zbl0744.46041
  8. [8] T. W. Palmer, Spectral algebras, subalgebras and pseudonorms, Rocky Mountain J. Math., to appear. 
  9. [9] T. J. Ransford, A short proof of Johnson's theorem, Bull. London Math. Soc. 21 (1989), 487-488. Zbl0705.46028
  10. [10] C. E. Rickart, General Theory of Banach Algebras, Krieger, New York 1960. Zbl0095.09702
  11. [11] Á. Rodríguez-Palacios, Automatic continuity with application to C*-algebras, Math. Proc. Cambridge Philos. Soc., to appear. Zbl0762.46052
  12. [12] B. J. Tomiuk and B. Yood, Incomplete normed algebra norms on Banach algebras, Studia Math. 95 (1989), 119-132. Zbl0715.46024
  13. [13] B. Yood, Homomorphisms on normed algebras, Pacific J. Math. 8 (1958), 373-381. Zbl0084.33601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.