Uniqueness of unconditional bases of c 0 ( l p ) , 0 < p < 1

C. Leránoz

Studia Mathematica (1992)

  • Volume: 102, Issue: 3, page 193-207
  • ISSN: 0039-3223

Abstract

top
We prove that if 0 < p < 1 then a normalized unconditional basis of a complemented subspace of c 0 ( l p ) must be equivalent to a permutation of a subset of the canonical unit vector basis of c 0 ( l p ) . In particular, c 0 ( l p ) has unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss, and Tzafriri have previously proved the same result for c 0 ( l ) .

How to cite

top

Leránoz, C.. "Uniqueness of unconditional bases of $c_{0}(l_{p})$, 0 < p < 1." Studia Mathematica 102.3 (1992): 193-207. <http://eudml.org/doc/215922>.

@article{Leránoz1992,
abstract = {We prove that if 0 < p < 1 then a normalized unconditional basis of a complemented subspace of $c_0(l_p)$ must be equivalent to a permutation of a subset of the canonical unit vector basis of $c_0(l_p)$. In particular, $c_0(l_p)$ has unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss, and Tzafriri have previously proved the same result for $c_0(l₁)$.},
author = {Leránoz, C.},
journal = {Studia Mathematica},
keywords = {normalized unconditional basis; complemented subspace},
language = {eng},
number = {3},
pages = {193-207},
title = {Uniqueness of unconditional bases of $c_\{0\}(l_\{p\})$, 0 < p < 1},
url = {http://eudml.org/doc/215922},
volume = {102},
year = {1992},
}

TY - JOUR
AU - Leránoz, C.
TI - Uniqueness of unconditional bases of $c_{0}(l_{p})$, 0 < p < 1
JO - Studia Mathematica
PY - 1992
VL - 102
IS - 3
SP - 193
EP - 207
AB - We prove that if 0 < p < 1 then a normalized unconditional basis of a complemented subspace of $c_0(l_p)$ must be equivalent to a permutation of a subset of the canonical unit vector basis of $c_0(l_p)$. In particular, $c_0(l_p)$ has unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss, and Tzafriri have previously proved the same result for $c_0(l₁)$.
LA - eng
KW - normalized unconditional basis; complemented subspace
UR - http://eudml.org/doc/215922
ER -

References

top
  1. [1] A. Bonami, Ensembles Λ (p) dans le dual D , Ann. Inst. Fourier (Grenoble) 18 (2) (1968), 193-204. 
  2. [2] J. Bourgain, P. G. Casazza, J. Lindenstrauss and L. Tzafriri, Banach spaces with a unique unconditional basis, up to permutation, Mem. Amer. Math. Soc. 322 (1985). Zbl0575.46011
  3. [3] N. J. Kalton, Orlicz sequence spaces without local convexity, Math. Proc. Cambridge Philos. Soc. 81 (1977), 253-278. Zbl0345.46013
  4. [4] N. J. Kalton, Banach envelopes of non-locally convex spaces, Canad. J. Math. 38 (1986), 65-86. Zbl0577.46016
  5. [5] N. J. Kalton, C. Leránoz and P. Wojtaszczyk, Uniqueness of unconditional bases in quasi-Banach spaces with applications to Hardy spaces, Israel J. Math. 72 (1990), 299-311. Zbl0753.46013
  6. [6] N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space Sampler, London Math. Soc. Lecture Note Ser. 89, Cambridge University Press, 1985. 
  7. [7] C. Leránoz, Uniqueness of unconditional bases in quasi-Banach spaces, Ph.D. thesis, University of Missouri-Columbia, 1990. 
  8. [8] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in p -spaces and their applications, Studia Math. 29 (1968), 275-326. Zbl0183.40501
  9. [9] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer, Berlin 1979. Zbl0403.46022
  10. [10] J. Lindenstrauss and M. Zippin, Banach spaces with a unique unconditional basis, J. Funct. Anal. 3 (1969), 115-125. Zbl0174.17201
  11. [11] B. Maurey, Type et cotype dans les espaces munis de structures locales inconditionnelles, in: Sém. Maurey-Schwartz 1973-1974, Exposés 24-25, École Polytechnique, Paris. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.