# Reiteration and a Wolff theorem for interpolation methods defined by means of polygons

Fernando Cobos; Pedro Fernandez-Martinez

Studia Mathematica (1992)

- Volume: 102, Issue: 3, page 239-256
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topCobos, Fernando, and Fernandez-Martinez, Pedro. "Reiteration and a Wolff theorem for interpolation methods defined by means of polygons." Studia Mathematica 102.3 (1992): 239-256. <http://eudml.org/doc/215926>.

@article{Cobos1992,

abstract = {We prove a reiteration theorem for interpolationmethods defined by means of polygons, and a Wolff theorem for the case when the polygon has 3 or 4 vertices. In particular, we establish a Wolff theorem for Fernandez' spaces, which settles a problem left over in [5].},

author = {Cobos, Fernando, Fernandez-Martinez, Pedro},

journal = {Studia Mathematica},

keywords = {reiteration theorem; interpolation; means of polygons; Wolff theorem; Fernandez' spaces},

language = {eng},

number = {3},

pages = {239-256},

title = {Reiteration and a Wolff theorem for interpolation methods defined by means of polygons},

url = {http://eudml.org/doc/215926},

volume = {102},

year = {1992},

}

TY - JOUR

AU - Cobos, Fernando

AU - Fernandez-Martinez, Pedro

TI - Reiteration and a Wolff theorem for interpolation methods defined by means of polygons

JO - Studia Mathematica

PY - 1992

VL - 102

IS - 3

SP - 239

EP - 256

AB - We prove a reiteration theorem for interpolationmethods defined by means of polygons, and a Wolff theorem for the case when the polygon has 3 or 4 vertices. In particular, we establish a Wolff theorem for Fernandez' spaces, which settles a problem left over in [5].

LA - eng

KW - reiteration theorem; interpolation; means of polygons; Wolff theorem; Fernandez' spaces

UR - http://eudml.org/doc/215926

ER -

## References

top- [1] N. Aronszajn and E. Gagliardo, Interpolation spaces and interpolation methods, Ann. Mat. Pura Appl. 68 (1965), 51-118. Zbl0195.13102
- [2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin 1976. Zbl0344.46071
- [3] Yu. A. Brudnyĭ and N. Ya. Kruglyak, Interpolation Functors and Interpolation Spaces, Vol. 1, North-Holland, Amsterdam 1991.
- [4] F. Cobos, T. Kühn and T. Schonbek, One-sided compactness results for Aronszajn-Gagliardo functors, J. Funct. Anal. 105 (1992), to appear. Zbl0787.46061
- [5] F. Cobos and J. Peetre, A multidimensional Wolff theorem, Studia Math. 94 (1989), 273-290. Zbl0716.46055
- [6] F. Cobos and J. Peetre, Interpolation of compact operators: the multidimensional case, Proc. London Math. Soc. 63 (1991), 371-400. Zbl0702.46047
- [7] M. Cwikel and S. Janson, Real and complex interpolation methods for finite and infinite families of Banach spaces, Adv. in Math. 66 (1987), 234-290. Zbl0646.46070
- [8] D. L. Fernandez, Interpolation of ${2}^{n}$ Banach spaces, Studia Math. 45 (1979), 175-201. Zbl0462.46051
- [9] D. L. Fernandez, Interpolation of ${2}^{d}$ Banach spaces and the Calderón spaces X(E), Proc. London Math. Soc. 56 (1988), 143-162. Zbl0662.46077
- [10] C. Foiaş and J. L. Lions, Sur certains théorèmes d'interpolation, Acta Sci. Math. (Szeged) 22 (1961), 269-282. Zbl0127.06803
- [11] S. Janson, P. Nilsson, J. Peetre and M. Zafran, Notes on Wolff's note on interpolation spaces, Proc. London Math. Soc. 48 (1984), 283-299. Zbl0532.46046
- [12] G. Sparr, Interpolation of several Banach spaces, Ann. Mat. Pura Appl. 99 (1974), 247-316. Zbl0282.46022
- [13] T. Wolff, A note on interpolation spaces, in: Proc. Conf. on Harmonic Analysis, Minneapolis 1981, Lecture Notes in Math. 908, Springer, Berlin 1982, 199-204.

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.