Points fixes et théorèmes ergodiques dans les espaces L¹(E)
Studia Mathematica (1992)
- Volume: 103, Issue: 1, page 79-97
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBesbes, Mourad. "Points fixes et théorèmes ergodiques dans les espaces L¹(E)." Studia Mathematica 103.1 (1992): 79-97. <http://eudml.org/doc/215937>.
@article{Besbes1992,
author = {Besbes, Mourad},
journal = {Studia Mathematica},
keywords = {linear contraction; fixed points; 1-complemented},
language = {fre},
number = {1},
pages = {79-97},
title = {Points fixes et théorèmes ergodiques dans les espaces L¹(E)},
url = {http://eudml.org/doc/215937},
volume = {103},
year = {1992},
}
TY - JOUR
AU - Besbes, Mourad
TI - Points fixes et théorèmes ergodiques dans les espaces L¹(E)
JO - Studia Mathematica
PY - 1992
VL - 103
IS - 1
SP - 79
EP - 97
LA - fre
KW - linear contraction; fixed points; 1-complemented
UR - http://eudml.org/doc/215937
ER -
References
top- [Als] D. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981), 423-424. Zbl0468.47036
- [A-N] E. Asplund and I. Namioka, A geometric proof of Ryll-Nardzewski's fixed point theorem, Bull. Amer. Math. Soc. 73 (1967), 443-445. Zbl0177.40404
- [Bal.1] E. J. Balder, Infinite-dimensional extension of a theorem of Komlós, Probab. Theory Related Fields 81 (1989), 185-188. Zbl0643.60008
- [Bal.2] E. J. Balder, On uniformly bounded sequences in Orlicz spaces, Bull. Austral. Math. Soc. 41 (1990), 495-502. Zbl0717.46029
- [Bal.3] E. J. Balder, New sequential compactness results for spaces of scalarly integrable functions, J. Math. Anal. Appl. 151 (1990), 1-16. Zbl0733.46015
- [Beh] E. Behrends, M-Structure and the Banach-Stone Theorem, Lecture Notes in Math. 736, Springer, Berlin 1979.
- [Bes.1] M. Besbes, Points fixes des contractions définies sur un convexe -fermé de L¹, C. R. Acad. Sci. Paris Sér. I 311 (1990), 243-246.
- [Bes.2] M. Besbes, Complémentation de l'ensemble des points fixes d'une contraction, preprint, 1990.
- [B-D-D-L] M. Besbes, S. Dilworth, P. Dowling and C. Lennard, New convexity and fixed point properties in Hardy and Lebesgue-Bochner spaces, preprint. Zbl0804.46044
- [Bru] R. Bruck, Properties of fixed-point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251-262.
- [Day] M. M. Day, Normed Linear Spaces, Springer, Berlin 1973.
- [Die] J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin 1984.
- [Gar] D. J. H. Garling, Subsequence principles for vector-valued random variables, Math. Proc. Cambridge Philos. Soc. 86 (1979), 301-311. Zbl0416.60009
- [Gin] E. Giner, Espaces intégraux de type Orlicz, thèse, Université des Sciences et Techniques du Languedoc, Perpignan 1977.
- [God] G. Godefroy, Sous-espaces bien disposés de L¹. Applications, Trans. Amer. Math. Soc. 286 (1984), 227-249. Zbl0521.46012
- [Hof] L. D. Hoffmann, Pseudo-uniform convexity of H¹ in several variables, Proc. Amer. Math. Soc. 26 (1970), 609-614. Zbl0208.15801
- [Huf] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749. Zbl0505.46011
- [Kak] S. Kakutani, Two fixed point theorems concerning bicompact convex sets, Proc. Imperial Acad. Tokyo 14 (1938), 242-245. Zbl64.1101.03
- [K-T] M. A. Khamsi and P. Turpin, Fixed points of nonexpansive mappings in Banach lattices, Proc. Amer. Math. Soc. 105 (1) (1989), 102-110. Zbl0677.47032
- [Kom] J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18 (1967), 217-229. Zbl0228.60012
- [Kre.1] U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin 1985.
- [Kre.2] U. Krengel, On the global limit behaviour of Markov chains and of general nonsingular Markov processes, Z. Wahrsch. Verw. Gebiete 6 (1966), 302-316. Zbl0218.60060
- [Len] C. Lennard, A new convexity property that implies a fixed point property for L₁, Studia Math. 100 (1991), 95-108. Zbl0762.46007
- [Lim] T.-C. Lim, Asymptotic centers and nonexpansive mappings in conjugate Banach spaces, Pacific J. Math. 90 (1980), 135-143. Zbl0454.47046
- [Mar] A. Markov, Quelques théorèmes sur les ensembles abéliens, Dokl. Akad. Nauk SSSR (N.S.) 10 (1936), 311-313. Zbl0014.08201
- [Maz] P. Mazet, manuscrit non publié.
- [Opi] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. Zbl0179.19902
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.