An example of a subalgebra of H on the unit disk whose stable rank is not finite

Raymond Mortini

Studia Mathematica (1992)

  • Volume: 103, Issue: 3, page 275-281
  • ISSN: 0039-3223

Abstract

top
We present an example of a subalgebra with infinite stable rank in the algebra of all bounded analytic functions in the unit disk.

How to cite

top

Mortini, Raymond. "An example of a subalgebra of $H^{∞}$ on the unit disk whose stable rank is not finite." Studia Mathematica 103.3 (1992): 275-281. <http://eudml.org/doc/215950>.

@article{Mortini1992,
abstract = {We present an example of a subalgebra with infinite stable rank in the algebra of all bounded analytic functions in the unit disk.},
author = {Mortini, Raymond},
journal = {Studia Mathematica},
keywords = {subalgebra with infinite stable rank in the algebra of all bounded analytic functions in the unit disk},
language = {eng},
number = {3},
pages = {275-281},
title = {An example of a subalgebra of $H^\{∞\}$ on the unit disk whose stable rank is not finite},
url = {http://eudml.org/doc/215950},
volume = {103},
year = {1992},
}

TY - JOUR
AU - Mortini, Raymond
TI - An example of a subalgebra of $H^{∞}$ on the unit disk whose stable rank is not finite
JO - Studia Mathematica
PY - 1992
VL - 103
IS - 3
SP - 275
EP - 281
AB - We present an example of a subalgebra with infinite stable rank in the algebra of all bounded analytic functions in the unit disk.
LA - eng
KW - subalgebra with infinite stable rank in the algebra of all bounded analytic functions in the unit disk
UR - http://eudml.org/doc/215950
ER -

References

top
  1. [1] H. Bass, K-theory and stable algebra, IHES Publ. Math. 22 (1964), 5-60. 
  2. [2] B. J. Cole and T. W. Gamelin, Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. 53 (1986), 112-142. Zbl0624.46032
  3. [3] G. Corach and A. R. Larotonda, Stable range in Banach algebras, J. Pure Appl. Algebra 32 (1984), 289-300. Zbl0571.46032
  4. [4] G. Corach and F. Suárez, Extension problems and stable rank in commutative Banach algebras, Topology Appl. 21 (1985), 1-8. Zbl0606.46033
  5. [5] G. Corach and F. Suárez, Stable rank in holomorphic function algebras, Illinois J. Math. 29 (1985), 627-639. Zbl0606.46034
  6. [6] G. Corach and F. Suárez, Dense morphisms in commutative Banach algebras, Trans. Amer. Math. Soc. 304 (1987), 537-547. Zbl0633.46054
  7. [7] T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969. Zbl0213.40401
  8. [8] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York 1981. Zbl0469.30024
  9. [9] P. Jones, D. Marshall and T. H. Wolff, Stable rank of the disc algebra, Proc. Amer. Math. Soc. 96 (1986), 603-604. Zbl0626.46043
  10. [10] L. Laroco, Stable rank and approximation theorems in H , Trans. Amer. Math. Soc. 327 (1991), 815-832. Zbl0744.46040
  11. [11] R. Rupp, Stable rank of subalgebras of the disk algebra, Proc. Amer. Math. Soc. 108 (1990), 137-142. Zbl0697.46021
  12. [12] R. Rupp, Stable rank of subalgebras of the ball algebra, ibid. 109 (1990), 781-786. Zbl0729.46024
  13. [13] S. Scheinberg, Cluster sets and corona theorems, in: Lecture Notes in Math. 604, Springer 1977, 103-106. 
  14. [14] S. Treil, The stable rank of the algebra H is one, preprint. Zbl0784.46037
  15. [15] L. N. Vaserstein, Stable rank of rings and dimensionality of topological spaces, Funct. Anal. Appl. 5 (1971), 102-110. Zbl0239.16028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.