An example of a subalgebra of H on the unit disk whose stable rank is not finite

Raymond Mortini

Studia Mathematica (1992)

  • Volume: 103, Issue: 3, page 275-281
  • ISSN: 0039-3223

Abstract

top
We present an example of a subalgebra with infinite stable rank in the algebra of all bounded analytic functions in the unit disk.

How to cite

top

Mortini, Raymond. "An example of a subalgebra of $H^{∞}$ on the unit disk whose stable rank is not finite." Studia Mathematica 103.3 (1992): 275-281. <http://eudml.org/doc/215950>.

@article{Mortini1992,
abstract = {We present an example of a subalgebra with infinite stable rank in the algebra of all bounded analytic functions in the unit disk.},
author = {Mortini, Raymond},
journal = {Studia Mathematica},
keywords = {subalgebra with infinite stable rank in the algebra of all bounded analytic functions in the unit disk},
language = {eng},
number = {3},
pages = {275-281},
title = {An example of a subalgebra of $H^\{∞\}$ on the unit disk whose stable rank is not finite},
url = {http://eudml.org/doc/215950},
volume = {103},
year = {1992},
}

TY - JOUR
AU - Mortini, Raymond
TI - An example of a subalgebra of $H^{∞}$ on the unit disk whose stable rank is not finite
JO - Studia Mathematica
PY - 1992
VL - 103
IS - 3
SP - 275
EP - 281
AB - We present an example of a subalgebra with infinite stable rank in the algebra of all bounded analytic functions in the unit disk.
LA - eng
KW - subalgebra with infinite stable rank in the algebra of all bounded analytic functions in the unit disk
UR - http://eudml.org/doc/215950
ER -

References

top
  1. [1] H. Bass, K-theory and stable algebra, IHES Publ. Math. 22 (1964), 5-60. 
  2. [2] B. J. Cole and T. W. Gamelin, Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. 53 (1986), 112-142. Zbl0624.46032
  3. [3] G. Corach and A. R. Larotonda, Stable range in Banach algebras, J. Pure Appl. Algebra 32 (1984), 289-300. Zbl0571.46032
  4. [4] G. Corach and F. Suárez, Extension problems and stable rank in commutative Banach algebras, Topology Appl. 21 (1985), 1-8. Zbl0606.46033
  5. [5] G. Corach and F. Suárez, Stable rank in holomorphic function algebras, Illinois J. Math. 29 (1985), 627-639. Zbl0606.46034
  6. [6] G. Corach and F. Suárez, Dense morphisms in commutative Banach algebras, Trans. Amer. Math. Soc. 304 (1987), 537-547. Zbl0633.46054
  7. [7] T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969. Zbl0213.40401
  8. [8] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York 1981. Zbl0469.30024
  9. [9] P. Jones, D. Marshall and T. H. Wolff, Stable rank of the disc algebra, Proc. Amer. Math. Soc. 96 (1986), 603-604. Zbl0626.46043
  10. [10] L. Laroco, Stable rank and approximation theorems in H , Trans. Amer. Math. Soc. 327 (1991), 815-832. Zbl0744.46040
  11. [11] R. Rupp, Stable rank of subalgebras of the disk algebra, Proc. Amer. Math. Soc. 108 (1990), 137-142. Zbl0697.46021
  12. [12] R. Rupp, Stable rank of subalgebras of the ball algebra, ibid. 109 (1990), 781-786. Zbl0729.46024
  13. [13] S. Scheinberg, Cluster sets and corona theorems, in: Lecture Notes in Math. 604, Springer 1977, 103-106. 
  14. [14] S. Treil, The stable rank of the algebra H is one, preprint. Zbl0784.46037
  15. [15] L. N. Vaserstein, Stable rank of rings and dimensionality of topological spaces, Funct. Anal. Appl. 5 (1971), 102-110. Zbl0239.16028

NotesEmbed ?

top

You must be logged in to post comments.