# Isomorphism of certain weak ${L}^{p}$ spaces

Studia Mathematica (1993)

- Volume: 104, Issue: 2, page 151-160
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topLeung, Denny. "Isomorphism of certain weak $L^{p}$ spaces." Studia Mathematica 104.2 (1993): 151-160. <http://eudml.org/doc/215966>.

@article{Leung1993,

abstract = {It is shown that the weak $L^p$ spaces $ℓ^\{p,∞\}, L^\{p,∞\}[0,1]$, and $L^\{p,∞\}[0,∞)$ are isomorphic as Banach spaces.},

author = {Leung, Denny},

journal = {Studia Mathematica},

keywords = {weak spaces},

language = {eng},

number = {2},

pages = {151-160},

title = {Isomorphism of certain weak $L^\{p\}$ spaces},

url = {http://eudml.org/doc/215966},

volume = {104},

year = {1993},

}

TY - JOUR

AU - Leung, Denny

TI - Isomorphism of certain weak $L^{p}$ spaces

JO - Studia Mathematica

PY - 1993

VL - 104

IS - 2

SP - 151

EP - 160

AB - It is shown that the weak $L^p$ spaces $ℓ^{p,∞}, L^{p,∞}[0,1]$, and $L^{p,∞}[0,∞)$ are isomorphic as Banach spaces.

LA - eng

KW - weak spaces

UR - http://eudml.org/doc/215966

ER -

## References

top- [1] N. L. Carothers and S. J. Dilworth, Subspaces of ${L}_{p},q$, Proc. Amer. Math. Soc. 104 (1988), 537-545.
- [2] D. H. Leung, ${L}^{p,\infty}$ has a complemented subspace isomorphic to ${\ell}^{2}$, Rocky Mountain J. Math. 22 (1992), 943-952.
- [3] D. H. Leung, Embedding ${L}^{p,\infty}$ into ${L}^{p,\infty}[0,1]$ complementably, Bull. London Math. Soc. 23 (1991), 583-586.
- [4] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, Berlin 1977. Zbl0362.46013
- [5] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer, Berlin 1979. Zbl0403.46022

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.