Semigroups with nonquasianalytic growth
Studia Mathematica (1993)
- Volume: 104, Issue: 3, page 229-241
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. R. Allan and T. J. Ransford, Power-dominated elements in a Banach algebra, Studia Math. 94 (1989), 63-79. Zbl0705.46021
- [2] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), 837-852. Zbl0652.47022
- [3] I. C. Gokhberg and M. G. Kreǐn, The basic propositions on defect numbers, root numbers and indices of linear operators, Uspekhi Mat. Nauk 12 (2) (1957), 43-118; English transl.: Amer. Math. Soc. Transl. (2) 13 (1960), 185-264. Zbl0088.32101
- [4] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc., Providence, R.I., 1957.
- [5] Y. Katznelson, An Introduction to Harmonic Analysis, 2nd ed., Dover, New York 1976.
- [6] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313-328. Zbl0611.47005
- [7] Yu. I. Lyubich, V. I. Matsaev and G. M. Fel'dman, Representations with separable spectrum, Funct. Anal. Appl. 7 (1973), 129-136.
- [8] Yu. I. Lyubich and Vũ Quôc Phóng, Asymptotic stability of linear differential equations in Banach spaces, Studia Math. 88 (1988), 37-42. Zbl0639.34050
- [9] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin 1983.
- [10] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford Univ. Press, Oxford 1968. Zbl0165.15601
- [11] Vũ Quôc Phóng, Theorems of Katznelson-Tzafriri type for semigroups of operators, J. Funct. Anal. 103 (1992), 74-84. Zbl0770.47017
- [12] Vũ Quôc Phóng, On the spectrum, complete trajectories, and asymptotic stability of linear semidynamical systems, J. Differential Equations, to appear.