Representations of bimeasures
Studia Mathematica (1993)
- Volume: 104, Issue: 3, page 269-278
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topYlinen, Kari. "Representations of bimeasures." Studia Mathematica 104.3 (1993): 269-278. <http://eudml.org/doc/215975>.
@article{Ylinen1993,
abstract = {Separately σ-additive and separately finitely additive complex functions on the Cartesian product of two algebras of sets are represented in terms of spectral measures and their finitely additive counterparts. Applications of the techniques include a bounded joint convergence theorem for bimeasure integration, characterizations of positive-definite bimeasures, and a theorem on decomposing a bimeasure into a linear combination of positive-definite ones.},
author = {Ylinen, Kari},
journal = {Studia Mathematica},
keywords = {representations; bimeasures; convergence theorem; bimeasure integration; positive-definite bimeasures},
language = {eng},
number = {3},
pages = {269-278},
title = {Representations of bimeasures},
url = {http://eudml.org/doc/215975},
volume = {104},
year = {1993},
}
TY - JOUR
AU - Ylinen, Kari
TI - Representations of bimeasures
JO - Studia Mathematica
PY - 1993
VL - 104
IS - 3
SP - 269
EP - 278
AB - Separately σ-additive and separately finitely additive complex functions on the Cartesian product of two algebras of sets are represented in terms of spectral measures and their finitely additive counterparts. Applications of the techniques include a bounded joint convergence theorem for bimeasure integration, characterizations of positive-definite bimeasures, and a theorem on decomposing a bimeasure into a linear combination of positive-definite ones.
LA - eng
KW - representations; bimeasures; convergence theorem; bimeasure integration; positive-definite bimeasures
UR - http://eudml.org/doc/215975
ER -
References
top- [1] D. K. Chang and M. M. Rao, Bimeasures and nonstationary processes, in: Real and Stochastic Analysis, M. M. Rao (ed.), Wiley, New York 1986, 7-118. Zbl0616.60009
- [2] S. D. Chatterji, Orthogonally scattered dilation of Hilbert space valued set functions, in: Measure Theory (Proc. Conf. Oberwolfach 1981), Lecture Notes in Math. 945, Springer, Berlin 1982, 269-281. Zbl0489.28007
- [3] E. Christensen and A. M. Sinclair, Representations of completely bounded multilinear operators, J. Funct. Anal. 72 (1987), 151-181. Zbl0622.46040
- [4] N. Dunford and J. T. Schwartz, Linear Operators I: General Theory, Pure Appl. Math. 7, Interscience, New York 1958. Zbl0084.10402
- [5] J. E. Gilbert, T. Ito and B. M. Schreiber, Bimeasure algebras on locally compact groups, J. Funct. Anal. 64 (1985), 134-162. Zbl0601.43001
- [6] C. C. Graham and B. Schreiber, Bimeasure algebras on LCA groups, Pacific J. Math. 115 (1984), 91-127. Zbl0502.43005
- [7] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Math. São Paulo 8 (1956), 1-79. Zbl0074.32303
- [8] P. R. Halmos, Normal dilations and extensions of operators, Summa Brasil. Math. 2 (1950), 125-134.
- [9] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, London 1967.
- [10] S. Kaijser and A. M. Sinclair, Projective tensor products of C*-algebras, Math. Scand. 55 (1984), 161-187. Zbl0557.46036
- [11] A. Makagon and H. Salehi, Spectral dilation of operator-valued measures and its application to infinite-dimensional harmonizable processes, Studia Math. 85 (1987), 257-297. Zbl0625.60042
- [12] M. Takesaki, Theory of Operator Algebras I, Springer, New York 1979.
- [13] K. Ylinen, On vector bimeasures, Ann. Mat. Pura Appl. (4) 117 (1978), 115-138. Zbl0399.46032
- [14] K. Ylinen, Dilations of V-bounded stochastic processes indexed by a locally compact group, Proc. Amer. Math. Soc. 90 (1984), 378-380. Zbl0531.60014
- [15] K. Ylinen, Noncommutative Fourier transforms of bounded bilinear forms and completely bounded multilinear operators, J. Funct. Anal. 79 (1988), 144-165. Zbl0663.46053
- [16] K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952), 46-66. Zbl0046.05401
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.