Interpolation by elementary operators
Studia Mathematica (1993)
- Volume: 105, Issue: 1, page 77-92
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Apostol and L. Fialkow, Structural properties of elementary operators, Canad. J. Math. 38 (1986), 1485-1524. Zbl0627.47015
- [2] K. R. Davidson, Nest Algebras, Pitman Res. Notes in Math. 191, Pitman, 1988.
- [3] L. Fialkow, The range inclusion problem for elementary operators, Michigan Math. J. 34 (1987), 451-459. Zbl0644.47037
- [4] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monographs 18, Amer. Math. Soc., Providence, R.I., 1969. Zbl0181.13504
- [5] B. E. Johnson, Centralizers and operators reduced by maximal ideals, J. London Math. Soc. 43 (1968), 231-233. Zbl0157.20601
- [6] R. V. Kadison, Local derivations, J. Algebra 130 (1990), 494-509. Zbl0751.46041
- [7] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vols. I and II, Academic Press, London 1983 and 1986. Zbl0518.46046
- [8] D. R. Larson and A. R. Sourour, Local derivations and local automorphisms of B(X), in: Proc. Sympos. Pure Math. 51, Part 2, Amer. Math. Soc., 1990, 187-194. Zbl0713.47045
- [9] B. Magajna, A system of operator equations, Canad. Math. Bull. 30 (1987), 200-209.
- [10] B. Magajna, A transitivity theorem for algebras of elementary operators, Proc. Amer. Math. Soc., to appear. Zbl0799.46068
- [11] M. Mathieu, Elementary operators on prime C*-algebras I, Math. Ann. 284 (1989), 223-244. Zbl0648.46052
- [12] M. Mathieu, Rings of quotients of ultraprime Banach algebras, with applications to elementary operators, Proc. Centre Math. Anal. Austral. Nat. Univ. 21 (1989), 297-317.
- [13] G. K. Pedersen, Analysis Now, Graduate Texts in Math. 118, Springer, New York 1989.
- [14] V. S. Šulman, Operator algebras with strongly cyclic vectors, Mat. Zametki 16 (1974), 253-257 (in Russian).