Nonconvolution transforms with oscillating kernels that map into itself
Studia Mathematica (1993)
- Volume: 106, Issue: 1, page 1-44
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topSampson, G.. "Nonconvolution transforms with oscillating kernels that map $Ḃ_{1}^{0,1}$ into itself." Studia Mathematica 106.1 (1993): 1-44. <http://eudml.org/doc/216001>.
@article{Sampson1993,
abstract = {We consider operators of the form $(Ωf)(y) = ʃ_\{-∞\}^∞ Ω(y,u)f(u)du$ with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and $h ∈ L^∞$ (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space $Ḃ^\{0,1\}_1$ (= B) into itself. In particular, all operators with $h(y) = e^\{i|y|^a\}$, a > 0, a ≠ 1, map B into itself.},
author = {Sampson, G.},
journal = {Studia Mathematica},
keywords = {Calderón-Zygmund kernel},
language = {eng},
number = {1},
pages = {1-44},
title = {Nonconvolution transforms with oscillating kernels that map $Ḃ_\{1\}^\{0,1\}$ into itself},
url = {http://eudml.org/doc/216001},
volume = {106},
year = {1993},
}
TY - JOUR
AU - Sampson, G.
TI - Nonconvolution transforms with oscillating kernels that map $Ḃ_{1}^{0,1}$ into itself
JO - Studia Mathematica
PY - 1993
VL - 106
IS - 1
SP - 1
EP - 44
AB - We consider operators of the form $(Ωf)(y) = ʃ_{-∞}^∞ Ω(y,u)f(u)du$ with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and $h ∈ L^∞$ (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space $Ḃ^{0,1}_1$ (= B) into itself. In particular, all operators with $h(y) = e^{i|y|^a}$, a > 0, a ≠ 1, map B into itself.
LA - eng
KW - Calderón-Zygmund kernel
UR - http://eudml.org/doc/216001
ER -
References
top- [1] S. Chanillo and M. Christ, Weak (1,1) bounds for oscillating singular integrals, Duke Math. J. 55 (1987), 141-155. Zbl0667.42007
- [2] S. Chanillo and M. Christ, Weak and Mischa Cotlar, preprint, 1985.
- [3] S. Chanillo, D. S. Kurtz and G. Sampson, Weighted weak (1,1) estimates and weighted estimates for oscillating kernels, Trans. Amer. Math. Soc. 295 (1986), 127-145. Zbl0594.42007
- [4] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
- [5] G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371-397. Zbl0567.47025
- [6] G. S. De Souza, Spaces formed by special atoms, Ph.D. dissertation, S.U.N.Y. at Albany, 1980. Zbl0546.30027
- [7] G. S. De Souza and A. Gulisashvili, Special atom decompositions of Besov spaces on fractal sets, preprint, 1990.
- [8] G. S. De Souza and G. Sampson, A real characterization of the pre-dual of Bloch functions, J. London Math. Soc. (2) 27 (1983), 267-276. Zbl0488.30040
- [9] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., 1991. Zbl0757.42006
- [10] Y. -S. Han and S. Hofmann, T1 theorems for Besov and Triebel-Lizorkin spaces, Trans. Amer. Math. Soc., to appear. Zbl0779.42010
- [11] Y.-S. Han, B. Jawerth, M. Taibleson and G. Weiss, Littlewood-Paley theory and ε-families of operators, Colloq. Math. 60/61 (1) (1990), 321-359. Zbl0763.46024
- [12] W. B. Jurkat and G. Sampson, The complete solution to the mapping problem for a class of oscillating kernels, Indiana Univ. Math. J. 30 (1981), 403-413. Zbl0507.47013
- [13] M. Meyer, Continuité Besov de certains opérateurs intégraux singuliers, Ark. Mat. 27 (1989), 305-318.
- [14] Y. Meyer, La minimalité de l’espace de Besov et la continuité des opérateurs définis par des intégrales singulières, Monografías de Matemáticas 4, Univ. Autónoma de Madrid, 1986.
- [15] M. Reyes, An analytic study of the functions defined on the self-similar fractals, preprint, 1990.
- [16] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, 1. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179-194. Zbl0622.42010
- [17] G. Sampson, Oscillating kernels that map into , Ark. Mat. 18 (1980), 125-144. Zbl0473.42013
- [18] G. Sampson, On classes of real analytic families of singular integrals on and , J. London Math. Soc. (2) 23 (1981), 433-441.
- [19] G. Sampson, and weighted estimates for convolutions with singular and oscillating kernels, ibid. 43 (1991), 465-484. Zbl0747.42011
- [20] G. Sampson, Operators mapping into and operators mapping into , preprint, 1991.
- [21] P. Sjölin, Convolution with oscillating kernels, Indiana Univ. Math. J. 30 (1981), 47-56. Zbl0419.47020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.