Nonconvolution transforms with oscillating kernels that map 1 0 , 1 into itself

G. Sampson

Studia Mathematica (1993)

  • Volume: 106, Issue: 1, page 1-44
  • ISSN: 0039-3223

Abstract

top
We consider operators of the form ( Ω f ) ( y ) = ʃ - Ω ( y , u ) f ( u ) d u with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and h L (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space 1 0 , 1 (= B) into itself. In particular, all operators with h ( y ) = e i | y | a , a > 0, a ≠ 1, map B into itself.

How to cite

top

Sampson, G.. "Nonconvolution transforms with oscillating kernels that map $Ḃ_{1}^{0,1}$ into itself." Studia Mathematica 106.1 (1993): 1-44. <http://eudml.org/doc/216001>.

@article{Sampson1993,
abstract = {We consider operators of the form $(Ωf)(y) = ʃ_\{-∞\}^∞ Ω(y,u)f(u)du$ with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and $h ∈ L^∞$ (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space $Ḃ^\{0,1\}_1$ (= B) into itself. In particular, all operators with $h(y) = e^\{i|y|^a\}$, a > 0, a ≠ 1, map B into itself.},
author = {Sampson, G.},
journal = {Studia Mathematica},
keywords = {Calderón-Zygmund kernel},
language = {eng},
number = {1},
pages = {1-44},
title = {Nonconvolution transforms with oscillating kernels that map $Ḃ_\{1\}^\{0,1\}$ into itself},
url = {http://eudml.org/doc/216001},
volume = {106},
year = {1993},
}

TY - JOUR
AU - Sampson, G.
TI - Nonconvolution transforms with oscillating kernels that map $Ḃ_{1}^{0,1}$ into itself
JO - Studia Mathematica
PY - 1993
VL - 106
IS - 1
SP - 1
EP - 44
AB - We consider operators of the form $(Ωf)(y) = ʃ_{-∞}^∞ Ω(y,u)f(u)du$ with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and $h ∈ L^∞$ (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space $Ḃ^{0,1}_1$ (= B) into itself. In particular, all operators with $h(y) = e^{i|y|^a}$, a > 0, a ≠ 1, map B into itself.
LA - eng
KW - Calderón-Zygmund kernel
UR - http://eudml.org/doc/216001
ER -

References

top
  1. [1] S. Chanillo and M. Christ, Weak (1,1) bounds for oscillating singular integrals, Duke Math. J. 55 (1987), 141-155. Zbl0667.42007
  2. [2] S. Chanillo and M. Christ, Weak L 1 and Mischa Cotlar, preprint, 1985. 
  3. [3] S. Chanillo, D. S. Kurtz and G. Sampson, Weighted weak (1,1) estimates and weighted L p estimates for oscillating kernels, Trans. Amer. Math. Soc. 295 (1986), 127-145. Zbl0594.42007
  4. [4] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
  5. [5] G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371-397. Zbl0567.47025
  6. [6] G. S. De Souza, Spaces formed by special atoms, Ph.D. dissertation, S.U.N.Y. at Albany, 1980. Zbl0546.30027
  7. [7] G. S. De Souza and A. Gulisashvili, Special atom decompositions of Besov spaces on fractal sets, preprint, 1990. 
  8. [8] G. S. De Souza and G. Sampson, A real characterization of the pre-dual of Bloch functions, J. London Math. Soc. (2) 27 (1983), 267-276. Zbl0488.30040
  9. [9] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., 1991. Zbl0757.42006
  10. [10] Y. -S. Han and S. Hofmann, T1 theorems for Besov and Triebel-Lizorkin spaces, Trans. Amer. Math. Soc., to appear. Zbl0779.42010
  11. [11] Y.-S. Han, B. Jawerth, M. Taibleson and G. Weiss, Littlewood-Paley theory and ε-families of operators, Colloq. Math. 60/61 (1) (1990), 321-359. Zbl0763.46024
  12. [12] W. B. Jurkat and G. Sampson, The complete solution to the ( L p , L q ) mapping problem for a class of oscillating kernels, Indiana Univ. Math. J. 30 (1981), 403-413. Zbl0507.47013
  13. [13] M. Meyer, Continuité Besov de certains opérateurs intégraux singuliers, Ark. Mat. 27 (1989), 305-318. 
  14. [14] Y. Meyer, La minimalité de l’espace de Besov 1 0 , 1 et la continuité des opérateurs définis par des intégrales singulières, Monografías de Matemáticas 4, Univ. Autónoma de Madrid, 1986. 
  15. [15] M. Reyes, An analytic study of the functions defined on the self-similar fractals, preprint, 1990. 
  16. [16] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, 1. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179-194. Zbl0622.42010
  17. [17] G. Sampson, Oscillating kernels that map H 1 into L 1 , Ark. Mat. 18 (1980), 125-144. Zbl0473.42013
  18. [18] G. Sampson, On classes of real analytic families of singular integrals on H 1 and L p , J. London Math. Soc. (2) 23 (1981), 433-441. 
  19. [19] G. Sampson, H p and L 2 weighted estimates for convolutions with singular and oscillating kernels, ibid. 43 (1991), 465-484. Zbl0747.42011
  20. [20] G. Sampson, Operators mapping 1 0 , 1 into 1 0 , 1 and operators mapping L 2 into L 2 , preprint, 1991. 
  21. [21] P. Sjölin, Convolution with oscillating kernels, Indiana Univ. Math. J. 30 (1981), 47-56. Zbl0419.47020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.