A multidimensional Lyapunov type theorem
Studia Mathematica (1993)
- Volume: 106, Issue: 2, page 121-128
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBressan, Alberto. "A multidimensional Lyapunov type theorem." Studia Mathematica 106.2 (1993): 121-128. <http://eudml.org/doc/216007>.
@article{Bressan1993,
abstract = {},
author = {Bressan, Alberto},
journal = {Studia Mathematica},
keywords = {Lyapunov's convexity theorem; Aumann integral; orthogonal hyperplane; Fourier transforms},
language = {eng},
number = {2},
pages = {121-128},
title = {A multidimensional Lyapunov type theorem},
url = {http://eudml.org/doc/216007},
volume = {106},
year = {1993},
}
TY - JOUR
AU - Bressan, Alberto
TI - A multidimensional Lyapunov type theorem
JO - Studia Mathematica
PY - 1993
VL - 106
IS - 2
SP - 121
EP - 128
AB -
LA - eng
KW - Lyapunov's convexity theorem; Aumann integral; orthogonal hyperplane; Fourier transforms
UR - http://eudml.org/doc/216007
ER -
References
top- [1] Z. Artstein, Yet another proof of the Lyapunov convexity theorem, Proc. Amer. Math. Soc. 108 (1990), 89-91. Zbl0685.28005
- [2] J. P. Aubin and A. Cellina, Differential Inclusions, Springer, New York 1984. Zbl0538.34007
- [3] A. Bressan and F. Flores, Multivalued Aumann integrals and controlled wave equations, preprint S.I.S.S.A., Trieste 1992. Zbl0828.49005
- [4] L. Cesari, Optimization. Theory and Applications, Springer, New York 1983.
- [5] P. R. Halmos, The range of a vector measure, Bull. Amer. Math. Soc. 54 (1948), 416-421. Zbl0033.05201
- [6] J. Lindenstrauss, A short proof of Liapounoff's convexity theorem, J. Math. Mech. 15 (1966), 971-972. Zbl0152.24403
- [7] A. A. Lyapunov, On completely additive vector-valued functions, Izv. Akad. Nauk SSSR Ser. Mat. 8 (1940), 465-478 (in Russian; French summary).
- [8] C. Olech, The Lyapunov theorem: its extensions and applications, in: Methods of Nonconvex Analysis, A. Cellina (ed.), Lecture Notes in Math. 1446, Springer, 1989, 84-103.
- [9] J. A. Yorke, Another proof of the Liapunov convexity theorem, SIAM J. Control 9 (1971), 351-353. Zbl0216.55601
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.