Properly semi-L-embedded complex spaces
Studia Mathematica (1993)
- Volume: 106, Issue: 2, page 197-202
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topRodríguez Palacios, Angel. "Properly semi-L-embedded complex spaces." Studia Mathematica 106.2 (1993): 197-202. <http://eudml.org/doc/216013>.
@article{RodríguezPalacios1993,
abstract = {We prove the existence of complex Banach spaces X such that every element F in the bidual X** of X has a unique best approximation π(F) in X, the equality ∥F∥ = ∥π (F)∥ + ∥F - π (F)∥ holds for all F in X**, but the mapping π is not linear.},
author = {Rodríguez Palacios, Angel},
journal = {Studia Mathematica},
keywords = {properly semi--embedded complex spaces; semi--summands; bidual; unique best approximation},
language = {eng},
number = {2},
pages = {197-202},
title = {Properly semi-L-embedded complex spaces},
url = {http://eudml.org/doc/216013},
volume = {106},
year = {1993},
}
TY - JOUR
AU - Rodríguez Palacios, Angel
TI - Properly semi-L-embedded complex spaces
JO - Studia Mathematica
PY - 1993
VL - 106
IS - 2
SP - 197
EP - 202
AB - We prove the existence of complex Banach spaces X such that every element F in the bidual X** of X has a unique best approximation π(F) in X, the equality ∥F∥ = ∥π (F)∥ + ∥F - π (F)∥ holds for all F in X**, but the mapping π is not linear.
LA - eng
KW - properly semi--embedded complex spaces; semi--summands; bidual; unique best approximation
UR - http://eudml.org/doc/216013
ER -
References
top- [1] C. Aparicio, F. Ocaña, R. Payá and A. Rodríguez, A non-smooth extension of Fréchet differentiability of the norm with applications to numerical ranges, Glasgow Math. J. 28 (1986), 121-137. Zbl0604.46021
- [2] T. J. Barton and R. M. Timoney, Weak* continuity of Jordan triple products and applications, Math. Scand. 59 (1986), 177-191. Zbl0621.46044
- [3] E. Behrends, Points of symmetry of convex sets in the two-dimensional complex space. A counterexample to D. Yost's problem, Math. Ann. 290 (1991), 463-471. Zbl0757.46017
- [4] E. Behrends and P. Harmand, Banach spaces which are proper M-ideals, Studia Math. 81 (1985), 159-169. Zbl0529.46015
- [5] P. Harmand and Å. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1983), 253-264. Zbl0545.46009
- [6] P. Harmand and T. S. S. R. K. Rao, An intersection property of balls and relations with M-ideals, Math. Z. 197 (1988), 277-290. Zbl0618.46020
- [7] P. Harmand, D. Werner and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math., Springer, to appear. Zbl0789.46011
- [8] Å. Lima, Intersection properties of balls and subspaces of Banach spaces, Trans. Amer. Math. Soc. 229 (1977), 1-62. Zbl0347.46017
- [9] J. Martínez, J. F. Mena, R. Payá and A. Rodríguez, An approach to numerical ranges without Banach algebra theory, Illinois J. Math. 29 (1985), 609-626. Zbl0604.46052
- [10] J. F. Mena, R. Payá and A. Rodríguez, Absolute subspaces of Banach spaces, Quart. J. Math. Oxford 40 (1989), 43-64. Zbl0693.46014
- [11] R. Payá and A. Rodríguez, Banach spaces which are semi-M-summands in their biduals, Math. Ann. 289 (1991), 529-542. Zbl0712.46005
- [12] D. Yost, Semi-M-ideals in complex Banach spaces, Rev. Roumaine Math. Pures Appl. 29 (1984), 619-623. Zbl0578.46015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.