-splines et approximation par -prolongement
Studia Mathematica (1993)
- Volume: 106, Issue: 3, page 203-211
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBenbourhim, N., and Gaches, J.. "$T_{f}$-splines et approximation par $T_{f}$ -prolongement." Studia Mathematica 106.3 (1993): 203-211. <http://eudml.org/doc/216014>.
@article{Benbourhim1993,
author = {Benbourhim, N., Gaches, J.},
journal = {Studia Mathematica},
language = {fre},
number = {3},
pages = {203-211},
title = {$T_\{f\}$-splines et approximation par $T_\{f\}$ -prolongement},
url = {http://eudml.org/doc/216014},
volume = {106},
year = {1993},
}
TY - JOUR
AU - Benbourhim, N.
AU - Gaches, J.
TI - $T_{f}$-splines et approximation par $T_{f}$ -prolongement
JO - Studia Mathematica
PY - 1993
VL - 106
IS - 3
SP - 203
EP - 211
LA - fre
UR - http://eudml.org/doc/216014
ER -
References
top- [1] M. Attéia, Convergence interne et externe des fonctions spline d'interpolation, Séminaire d'Analyse Numérique de Toulouse, 1975.
- [2] P. G. Ciarlet, Élasticité tridimensionnelle, Masson, Paris 1986.
- [3] J. Deny et J. L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier 5 (1954), 305-370. Zbl0065.09903
- [4] J. Duchon, Splines minimizing rotation-invariant semi-norms in Sobolev spaces, in: Lecture Notes in Math. 571, Springer, 1977, 85-100.
- [5] I. Ekeland et R. Temam, Analyse convexe et problèmes variationnels, Dunod, Paris 1974.
- [6] P. J. Laurentet Pham-Dinh-Tuan, Global approximation of a compact set by elements of a convex set in a normed space, Numer. Math. 15 (1970), 137-150.
- [7] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Hermann, Paris 1972.
- [8] D. V. Pai, On nonlinear minimization problems and Lf-splines, I, J. Approx. Theory 39 (1983), 228-235. Zbl0541.41038
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.