Spectrum of multidimensional dynamical systems with positive entropy

B. Kamiński; P. Liardet

Studia Mathematica (1994)

  • Volume: 108, Issue: 1, page 77-85
  • ISSN: 0039-3223

Abstract

top
Applying methods of harmonic analysis we give a simple proof of the multidimensional version of the Rokhlin-Sinaǐ theorem which states that a Kolmogorov d -action on a Lebesgue space has a countable Lebesgue spectrum. At the same time we extend this theorem to -actions. Next, using its relative version, we extend to -actions some other general results connecting spectrum and entropy.

How to cite

top

Kamiński, B., and Liardet, P.. "Spectrum of multidimensional dynamical systems with positive entropy." Studia Mathematica 108.1 (1994): 77-85. <http://eudml.org/doc/216042>.

@article{Kamiński1994,
abstract = {Applying methods of harmonic analysis we give a simple proof of the multidimensional version of the Rokhlin-Sinaǐ theorem which states that a Kolmogorov $ℤ^d$-action on a Lebesgue space has a countable Lebesgue spectrum. At the same time we extend this theorem to $ℤ^∞$-actions. Next, using its relative version, we extend to $ℤ^∞$-actions some other general results connecting spectrum and entropy.},
author = {Kamiński, B., Liardet, P.},
journal = {Studia Mathematica},
keywords = {positive entropy; Kolmogorov automorphism; Lebesgue spectrum; -actions; countable Abelian group},
language = {eng},
number = {1},
pages = {77-85},
title = {Spectrum of multidimensional dynamical systems with positive entropy},
url = {http://eudml.org/doc/216042},
volume = {108},
year = {1994},
}

TY - JOUR
AU - Kamiński, B.
AU - Liardet, P.
TI - Spectrum of multidimensional dynamical systems with positive entropy
JO - Studia Mathematica
PY - 1994
VL - 108
IS - 1
SP - 77
EP - 85
AB - Applying methods of harmonic analysis we give a simple proof of the multidimensional version of the Rokhlin-Sinaǐ theorem which states that a Kolmogorov $ℤ^d$-action on a Lebesgue space has a countable Lebesgue spectrum. At the same time we extend this theorem to $ℤ^∞$-actions. Next, using its relative version, we extend to $ℤ^∞$-actions some other general results connecting spectrum and entropy.
LA - eng
KW - positive entropy; Kolmogorov automorphism; Lebesgue spectrum; -actions; countable Abelian group
UR - http://eudml.org/doc/216042
ER -

References

top
  1. [G] F. P. Greenleaf, Invariant Means on Topological Groups, Van Nostrand Math. Stud. 16, 1969. Zbl0174.19001
  2. [H] H. Helson, Lectures on Invariant Subspaces, Academic Press, 1964. Zbl0119.11303
  3. [HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer, 1963. 
  4. [Ka] B. Kamiński, The theory of invariant partitions for d -actions, Bull. Polish Acad. Sci. Math. 29 (1981), 349-362. 
  5. [Ki1] J. C. Kieffer, A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space, Ann. Probab. 3 (1975), 1031-1037. Zbl0322.60032
  6. [Ki2] J. C. Kieffer, The isomorphism theorem for generalized Bernoulli schemes, in: Studies in Probability and Ergodic Theory, Adv. in Math. Suppl. Stud. 2, Academic Press, 1978, 251-267. 
  7. [Kir] A. A. Kirillov, Dynamical systems, factors and representations of groups, Uspekhi Mat. Nauk 22 (5) (1967), 67-80 (in Russian). 
  8. [MN] V. Mandrekar and M. Nadkarni, Quasi-invariance of analytic measures on compact groups, Bull. Amer. Math. Soc. 73 (1967), 915-920. Zbl0193.10601
  9. [Pa] W. Parry, Topics in Ergodic Theory, Cambridge University Press, 1981. Zbl0449.28016
  10. [Pi] B. S. Pitskel', On informational futures of amenable groups, Dokl. Akad. Nauk SSSR 223 (1975), 1067-1070 (in Russian). 
  11. [RS] V. A. Rokhlin and Ya. G. Sinaǐ, Construction and properties of invariant measurable partitions, ibid. 141 (1961), 1038-1041 (in Russian). 
  12. [Ro] A. Rosenthal, Uniform generators for ergodic finite entropy free actions of amenable groups, Probab. Theory Related Fields 77 (1988), 147-166. Zbl0614.28017
  13. [Ru] W. Rudin, Fourier Analysis on Groups, Interscience, New York, 1962. Zbl0107.09603
  14. [T] J. P. Thouvenot, Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l'un est un schéma de Bernoulli, Israel J. Math. 21 (1975), 177-207. Zbl0329.28008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.