Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type

Ana Bernardis; Oscar Salinas

Studia Mathematica (1994)

  • Volume: 108, Issue: 3, page 201-207
  • ISSN: 0039-3223

Abstract

top
We give a characterization of the pairs of weights (v,w), with w in the class A of Muckenhoupt, for which the fractional maximal function is a bounded operator from L p ( X , v d μ ) to L q ( X , w d μ ) when 1 < p ≤ q < ∞ and X is a space of homogeneous type.

How to cite

top

Bernardis, Ana, and Salinas, Oscar. "Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type." Studia Mathematica 108.3 (1994): 201-207. <http://eudml.org/doc/216050>.

@article{Bernardis1994,
abstract = {We give a characterization of the pairs of weights (v,w), with w in the class $A_∞$ of Muckenhoupt, for which the fractional maximal function is a bounded operator from $L^p(X,vdμ)$ to $L^q(X,wdμ)$ when 1 < p ≤ q < ∞ and X is a space of homogeneous type.},
author = {Bernardis, Ana, Salinas, Oscar},
journal = {Studia Mathematica},
keywords = {Muckenhoupt condition; Calderón-Zygmund decomposition; fractional maximal function; space of homogeneous type},
language = {eng},
number = {3},
pages = {201-207},
title = {Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type},
url = {http://eudml.org/doc/216050},
volume = {108},
year = {1994},
}

TY - JOUR
AU - Bernardis, Ana
AU - Salinas, Oscar
TI - Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type
JO - Studia Mathematica
PY - 1994
VL - 108
IS - 3
SP - 201
EP - 207
AB - We give a characterization of the pairs of weights (v,w), with w in the class $A_∞$ of Muckenhoupt, for which the fractional maximal function is a bounded operator from $L^p(X,vdμ)$ to $L^q(X,wdμ)$ when 1 < p ≤ q < ∞ and X is a space of homogeneous type.
LA - eng
KW - Muckenhoupt condition; Calderón-Zygmund decomposition; fractional maximal function; space of homogeneous type
UR - http://eudml.org/doc/216050
ER -

References

top
  1. [AM] H. Aimar and R. Macías, Weighted norm inequalities for the Hardy-Littlewood maximal operator on spaces of homogeneous type, Proc. Amer. Math. Soc. 91 (1984), 213-216. Zbl0539.42007
  2. [C] A. Calderón, Inequalities for the maximal function relative to a metric, Studia Math. 57 (1976), 297-306. Zbl0341.44007
  3. [CF] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, ibid. 51 (1974), 241-250. Zbl0291.44007
  4. [CW] R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971. 
  5. [MS1] R. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), 257-270. Zbl0431.46018
  6. [MS2] R. Macías and C. Segovia, A well behaved quasi-distance for spaces of homogeneous type, Trabajos de Matemática, no. 32, Inst. Argentino de Matemática, 1981. 
  7. [MT] R. Macías and J. L. Torrea, L² and L p boundedness of singular integrals on not necessarily normalized spaces of homogeneous type, Cuadernos de Matemática y Mecánica, PEMA-GTM-INTEC, no. 1-88, 1988. 
  8. [MW] B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261-274. Zbl0289.26010
  9. [P] C. Perez, Two weighted norm inequalities for Riesz potentials and uniform L p -weighted Sobolev inequalities, Indiana Univ. Math. J. 39 (1990), 31-44. Zbl0736.42015
  10. [SW] E. Sawyer and R. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), 813-874. Zbl0783.42011
  11. [W] R. Wheeden, A characterization of some weighted norm inequalities for the fractional maximal function, Studia Math. 107 (1993), 257-272. Zbl0809.42009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.