On the best constant in the Khinchin-Kahane inequality

Rafał Latała; Krzysztof Oleszkiewicz

Studia Mathematica (1994)

  • Volume: 109, Issue: 1, page 101-104
  • ISSN: 0039-3223

Abstract

top
We prove that if r i is the Rademacher system of functions then ( ʃ i = 1 n x i r i ( t ) 2 d t ) 1 / 2 2 ʃ i = 1 n x i r i ( t ) d t for any sequence of vectors x i in any normed linear space F.

How to cite

top

Latała, Rafał, and Oleszkiewicz, Krzysztof. "On the best constant in the Khinchin-Kahane inequality." Studia Mathematica 109.1 (1994): 101-104. <http://eudml.org/doc/216056>.

@article{Latała1994,
abstract = {We prove that if $r_i$ is the Rademacher system of functions then $(ʃ ∥∑_\{i=1\}^\{n\} x_\{i\}r_\{i\}(t)∥^2 dt)^\{1/2\} ≤ √2 ʃ ∥∑_\{i=1\}^\{n\}x_\{i\}r_\{i\}(t)∥dt$ for any sequence of vectors $x_i$ in any normed linear space F.},
author = {Latała, Rafał, Oleszkiewicz, Krzysztof},
journal = {Studia Mathematica},
keywords = {vector-valued inequalities; Rademacher system of functions},
language = {eng},
number = {1},
pages = {101-104},
title = {On the best constant in the Khinchin-Kahane inequality},
url = {http://eudml.org/doc/216056},
volume = {109},
year = {1994},
}

TY - JOUR
AU - Latała, Rafał
AU - Oleszkiewicz, Krzysztof
TI - On the best constant in the Khinchin-Kahane inequality
JO - Studia Mathematica
PY - 1994
VL - 109
IS - 1
SP - 101
EP - 104
AB - We prove that if $r_i$ is the Rademacher system of functions then $(ʃ ∥∑_{i=1}^{n} x_{i}r_{i}(t)∥^2 dt)^{1/2} ≤ √2 ʃ ∥∑_{i=1}^{n}x_{i}r_{i}(t)∥dt$ for any sequence of vectors $x_i$ in any normed linear space F.
LA - eng
KW - vector-valued inequalities; Rademacher system of functions
UR - http://eudml.org/doc/216056
ER -

References

top
  1. [1] U. Haagerup, The best constants in the Khintchine inequality, Studia Math. 70 (1982), 231-283. Zbl0501.46015
  2. [2] J.-P. Kahane, Sur les sommes vectorielles ± u n , C. R. Acad. Sci. Paris 259 (1964), 2577-2580. 
  3. [3] A. Khintchine [A. Khinchin], Über dyadische Brüche, Math. Z. 18 (1923), 109-116. 
  4. [4] S. J. Szarek, On the best constants in the Khinchin inequality, Studia Math. 58 (1976), 197-208. Zbl0424.42014
  5. [5] B. Tomaszewski, Two remarks on the Khintchin-Kahane inequality, Colloq. Math. 46 (1982), 283-288. Zbl0501.46021
  6. [6] B. Tomaszewski, A simple and elementary proof of the Khintchine inequality with the best constant, Bull. Sci. Math. (2) 111 (1987), 103-109. Zbl0623.42015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.