Pointwise multipliers for reverse Holder spaces
Studia Mathematica (1994)
- Volume: 109, Issue: 1, page 23-39
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBuckley, Stephen. "Pointwise multipliers for reverse Holder spaces." Studia Mathematica 109.1 (1994): 23-39. <http://eudml.org/doc/216058>.
@article{Buckley1994,
abstract = {We classify weights which map reverse Hölder weight spaces to other reverse Hölder weight spaces under pointwise multiplication. We also give some fairly general examples of weights satisfying weak reverse Hölder conditions.},
author = {Buckley, Stephen},
journal = {Studia Mathematica},
keywords = {reverse Hölder condition; maximal function; weight; doubling measure; pointwise multipliers; reverse Hölder spaces; weights},
language = {eng},
number = {1},
pages = {23-39},
title = {Pointwise multipliers for reverse Holder spaces},
url = {http://eudml.org/doc/216058},
volume = {109},
year = {1994},
}
TY - JOUR
AU - Buckley, Stephen
TI - Pointwise multipliers for reverse Holder spaces
JO - Studia Mathematica
PY - 1994
VL - 109
IS - 1
SP - 23
EP - 39
AB - We classify weights which map reverse Hölder weight spaces to other reverse Hölder weight spaces under pointwise multiplication. We also give some fairly general examples of weights satisfying weak reverse Hölder conditions.
LA - eng
KW - reverse Hölder condition; maximal function; weight; doubling measure; pointwise multipliers; reverse Hölder spaces; weights
UR - http://eudml.org/doc/216058
ER -
References
top- [B-I] B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in , Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1984), 257-324. Zbl0548.30016
- [C-F] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. Zbl0291.44007
- [G-R] J. García-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam, 1985.
- [G] F. Gehring, The integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265-277. Zbl0258.30021
- [I-N] T. Iwaniec and C. Nolder, Hardy-Littlewood inequality for quasiregular mappings in certain domains in ℝ, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 267-282. Zbl0588.30023
- [J-N] R. Johnson and C. Neugebauer, Homeomorphisms preserving , Rev. Mat. Iberoamericana 3 (1987), 249-273.
- [Mo] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591. Zbl0111.09302
- [Mu] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. Zbl0236.26016
- [Sa] E. Sawyer, Norm inequalities relating singular integrals and the maximal function, Studia Math. 75 (1983), 253-263. Zbl0528.44002
- [Sta] S. Staples, Maximal functions, -measures, and quasiconformal maps, Proc. Amer. Math. Soc. 113 (1991), 689-700. Zbl0817.30006
- [Ste] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
- [Str] E. Stredulinsky, Weighted Inequalities and Degenerate Elliptic Partial Differential Equations, Springer, 1984.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.