Reflexive Orlicz spaces have uniformly normal structure

Shutao Chen; Huiying Sun

Studia Mathematica (1994)

  • Volume: 109, Issue: 2, page 197-208
  • ISSN: 0039-3223

Abstract

top
We prove that an Orlicz space equipped with the Luxemburg norm has uniformly normal structure if and only if it is reflexive.

How to cite

top

Chen, Shutao, and Sun, Huiying. "Reflexive Orlicz spaces have uniformly normal structure." Studia Mathematica 109.2 (1994): 197-208. <http://eudml.org/doc/216069>.

@article{Chen1994,
abstract = {We prove that an Orlicz space equipped with the Luxemburg norm has uniformly normal structure if and only if it is reflexive.},
author = {Chen, Shutao, Sun, Huiying},
journal = {Studia Mathematica},
keywords = {Orlicz space equipped with the Luxemburg norm; uniformly normal structure; reflexive},
language = {eng},
number = {2},
pages = {197-208},
title = {Reflexive Orlicz spaces have uniformly normal structure},
url = {http://eudml.org/doc/216069},
volume = {109},
year = {1994},
}

TY - JOUR
AU - Chen, Shutao
AU - Sun, Huiying
TI - Reflexive Orlicz spaces have uniformly normal structure
JO - Studia Mathematica
PY - 1994
VL - 109
IS - 2
SP - 197
EP - 208
AB - We prove that an Orlicz space equipped with the Luxemburg norm has uniformly normal structure if and only if it is reflexive.
LA - eng
KW - Orlicz space equipped with the Luxemburg norm; uniformly normal structure; reflexive
UR - http://eudml.org/doc/216069
ER -

References

top
  1. [1] J. S. Bae, Reflexivity of a Banach space with a uniformly normal structure, Proc. Amer. Math. Soc. 90 (1984), 269-270. Zbl0548.46014
  2. [2] L. P. Belluce, W. A. Kirc and E. F. Steiner, Normal structure in Banach spaces, Pacific J. Math. 26 (1968), 433-440. Zbl0164.15001
  3. [3] E. Casini and E. Maluta, Fixed point of uniformly Lipschitzian mapping in spaces with uniformly normal structure, Nonlinear Anal. 104 (1984), 285-292. 
  4. [4] S. Chen and Y. Duan, Normal structure and weakly normal structure of Orlicz spaces, Comment. Math. Univ. Carolinae 32 (1991), 219-225. Zbl0760.46023
  5. [5] A. Kamińska, On uniform convexity of Orlicz spaces, Indag. Math. 44 (1982), 27-36. Zbl0489.46025
  6. [6] M. A. Krasnosel'skiĭ and Ya. B. Rutitskiĭ, Convex Functions and Orlicz Spaces, Nauka, Moscow, 1958 (in Russian). 
  7. [7] T. Landes, Normal structure and weakly normal structure of Orlicz sequence spaces, Trans. Amer. Math. Soc. 285 (1981), 523-533. Zbl0594.46010
  8. [8] S. Wang, Differentiability of Carathéodory operators, Sci. Bull. Math. 25 (1980), 42-45. 
  9. [9] T. Wang and B. Wang, Normal structure and sum-property of Orlicz sequence spaces, Chinese Math. Research & Exposition 12 (3) (1992). 
  10. [10] C. Wu, T. Wang, S. Chen and Y. Wang, Geometrical Theory of Orlicz Spaces, Harbin Inst. of Tech. Press, 1986 (in Chinese). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.