Some new Hardy spaces L ² H R q ( ² + × ² + ) (0 < q ≤ 1)

Dachun Yang

Studia Mathematica (1994)

  • Volume: 109, Issue: 3, page 217-231
  • ISSN: 0039-3223

Abstract

top
For 0 < q ≤ 1, the author introduces a new Hardy space L ² H q ( ² + × ² + ) on the product domain, and gives its generalized Lusin-area characterization. From this characterization, a φ-transform characterization in M. Frazier and B. Jawerth’s sense is deduced.

How to cite

top

Yang, Dachun. "Some new Hardy spaces $L²H^{q}_{R}(ℝ²_{+} × ℝ²_{+})$ (0 < q ≤ 1)." Studia Mathematica 109.3 (1994): 217-231. <http://eudml.org/doc/216071>.

@article{Yang1994,
abstract = {For 0 < q ≤ 1, the author introduces a new Hardy space $L² H^q_ℝ (ℝ²_+ × ℝ²_+)$ on the product domain, and gives its generalized Lusin-area characterization. From this characterization, a φ-transform characterization in M. Frazier and B. Jawerth’s sense is deduced.},
author = {Yang, Dachun},
journal = {Studia Mathematica},
keywords = {central rectangle; Herz space; product domain; central atom; Lusin area function characterization; -transform characterization; Hardy space},
language = {eng},
number = {3},
pages = {217-231},
title = {Some new Hardy spaces $L²H^\{q\}_\{R\}(ℝ²_\{+\} × ℝ²_\{+\})$ (0 < q ≤ 1)},
url = {http://eudml.org/doc/216071},
volume = {109},
year = {1994},
}

TY - JOUR
AU - Yang, Dachun
TI - Some new Hardy spaces $L²H^{q}_{R}(ℝ²_{+} × ℝ²_{+})$ (0 < q ≤ 1)
JO - Studia Mathematica
PY - 1994
VL - 109
IS - 3
SP - 217
EP - 231
AB - For 0 < q ≤ 1, the author introduces a new Hardy space $L² H^q_ℝ (ℝ²_+ × ℝ²_+)$ on the product domain, and gives its generalized Lusin-area characterization. From this characterization, a φ-transform characterization in M. Frazier and B. Jawerth’s sense is deduced.
LA - eng
KW - central rectangle; Herz space; product domain; central atom; Lusin area function characterization; -transform characterization; Hardy space
UR - http://eudml.org/doc/216071
ER -

References

top
  1. [1] S. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and H p -theory on product domains, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 1-43. Zbl0557.42007
  2. [2] S. A. Chang and R. Fefferman, A continuous version of duality of H 1 with BMO on the bidisc, Ann. of Math. 112 (1980), 179-201. Zbl0451.42014
  3. [3] Y. Z. Chen and K. S. Lau, On some new classes of Hardy spaces, J. Funct. Anal. 84 (1989), 255-278. Zbl0677.30030
  4. [4] J. Garcí a-Cuerva, Hardy spaces and Beurling algebras, J. London Math. Soc. (2) 39 (1989), 499-513. 
  5. [5] M. Frazier and B. Jawerth, The φ-transform and applications to distribution spaces, in: Function Spaces and Applications, M. Cwikel et al. (eds.), Lecture Notes in Math. 1302, Springer, 1989, 223-246. 
  6. [6] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34-170. Zbl0716.46031
  7. [7] S. Z. Lu and D. C. Yang, The wavelet characterizations of some new Hardy spaces associated with the Herz spaces, J. Beijing Normal Univ. (Natur. Sci.) 29 (1993), 10-19 (in Chinese). Zbl0782.42019
  8. [8] S. Z. Lu and D. C. Yang, The Littlewood-Paley function and φ-transform characterizations of a new Hardy space H K 2 associated with the Herz space, Studia Math. 101 (1992), 285-298. Zbl0811.42005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.