# Measures of noncompactness and normal structure in Banach spaces

J. García-Falset; A. Jiménez-Melado; E. Lloréns-Fuster

Studia Mathematica (1994)

- Volume: 110, Issue: 1, page 1-8
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topGarcía-Falset, J., Jiménez-Melado, A., and Lloréns-Fuster, E.. "Measures of noncompactness and normal structure in Banach spaces." Studia Mathematica 110.1 (1994): 1-8. <http://eudml.org/doc/216096>.

@article{García1994,

abstract = {Sufficient conditions for normal structure of a Banach space are given. One of them implies reflexivity for Banach spaces with an unconditional basis, and also for Banach lattices.},

author = {García-Falset, J., Jiménez-Melado, A., Lloréns-Fuster, E.},

journal = {Studia Mathematica},

keywords = {normal structure; nonexpansive mappings; measures of noncompactness; measures of non-compactness; normal structure of a Banach space; reflexivity; Banach spaces with an unconditional basis; Banach lattices},

language = {eng},

number = {1},

pages = {1-8},

title = {Measures of noncompactness and normal structure in Banach spaces},

url = {http://eudml.org/doc/216096},

volume = {110},

year = {1994},

}

TY - JOUR

AU - García-Falset, J.

AU - Jiménez-Melado, A.

AU - Lloréns-Fuster, E.

TI - Measures of noncompactness and normal structure in Banach spaces

JO - Studia Mathematica

PY - 1994

VL - 110

IS - 1

SP - 1

EP - 8

AB - Sufficient conditions for normal structure of a Banach space are given. One of them implies reflexivity for Banach spaces with an unconditional basis, and also for Banach lattices.

LA - eng

KW - normal structure; nonexpansive mappings; measures of noncompactness; measures of non-compactness; normal structure of a Banach space; reflexivity; Banach spaces with an unconditional basis; Banach lattices

UR - http://eudml.org/doc/216096

ER -

## References

top- [B] J. Banaś, On modulus of noncompact convexity and its properties, Canad. Math. Bull. 30 (1987), 186-192. Zbl0585.46011
- [D-S] D. van Dulst and B. Sims, Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type (KK), in: Banach Space Theory and Its Applications, Lecture Notes in Math. 991, Springer, Berlin, 1983, 35-43. Zbl0512.46015
- [G-J-L] J. García-Falset, A. Jiménez-Melado and E. Lloréns-Fuster, A characterization of normal structure, in: Proc. Second Internat. Conf. Fixed Point Theory and Appl., Halifax, 1991, K. K. Tan (ed.), World Sci., Singapore, 1992, 122-129.
- [G-K] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math. 28, Cambridge Univ. Press, 1990.
- [G-S] K. Goebel and T. Sękowski, The modulus of noncompact convexity, Ann. Univ. Mariae Curie-Skłodowska 38 (1984), 41-48. Zbl0607.46011
- [G-LD] J. P. Gossez and E. Lami Dozo, Some geometrical properties related to the fixed-point theory for nonexpansive mappings, Pacific J. Math. 40 (1972), 565-573. Zbl0223.47025
- [H] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749. Zbl0505.46011
- [K] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006,. Zbl0141.32402
- [KU] D. N. Kutzarova, Every (β)-space has the Banach-Saks property, C. R. Acad. Bulgare Sci. 42 (11) (1989), 9-11. Zbl0696.46016
- [L-Tz] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I-II, Springer, 1977. Zbl0362.46013
- [L] T. Landes, Normal structure and the sum property, Pacific J. Math. 123 (1986), 127-147. Zbl0629.46016
- [M] V. Montesinos, Drop property equals reflexivity, Studia Math. 87 (1987), 93-100. Zbl0652.46009
- [N-S-W] J. L. Nelson, K. L. Singh and J. H. M. Whitfield, Normal structures and nonexpansive mappings in Banach spaces, in: Nonlinear Analysis, Th. M. Rhassias (ed.), World Sci., Singapore, 1987, 433-492.
- [R1] S. Rolewicz, On drop property, Studia Math. 85 (1987), 27-35.
- [R2] S. Rolewicz, On Δ-uniform convexity and drop property, ibid. 87 (1987), 181-191.
- [S] B. Sims, Fixed points of nonexpansive maps on weak and weak*-compact sets, Queen's Univ. of Kingston Lecture Notes, 1982.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.