# Tauberian theorems for Cesàro summable double sequences

Studia Mathematica (1994)

- Volume: 110, Issue: 1, page 83-96
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topMóricz, Ferenc. "Tauberian theorems for Cesàro summable double sequences." Studia Mathematica 110.1 (1994): 83-96. <http://eudml.org/doc/216100>.

@article{Móricz1994,

abstract = {$(s_\{jk\}: j,k = 0,1,...)$ be a double sequence of real numbers which is summable (C,1,1) to a finite limit. We give necessary and sufficient conditions under which $(s_\{jk\})$ converges in Pringsheim’s sense. These conditions are satisfied if $(s_\{jk\})$ is slowly decreasing in certain senses defined in this paper. Among other things we deduce the following Tauberian theorem of Landau and Hardy type: If $(s_\{jk\})$ is summable (C,1,1) to a finite limit and there exist constants $n_1 > 0$ and H such that $jk(s_\{jk\} - s_\{j-1,k\} - s_\{j-1,k\} + s_\{j-1,k-1\}) ≥ -H$, $j(s_\{jk\} - s_\{j-1, k\}) ≥ -H$ and $k(s_\{jk\} - s_\{j,k-1\}) ≥ -H$ whenever $j,k > n_1$, then $(s_\{jk\})$ converges. We always mean convergence in Pringsheim’s sense. Our method is suitable to obtain analogous Tauberian results for double sequences of complex numbers or for those in an ordered linear space over the real numbers.},

author = {Móricz, Ferenc},

journal = {Studia Mathematica},

keywords = {double sequence; convergence in Pringsheim's sense; summability (C,1,1); (C,1,0) and (C,0,1); one-sided Tauberian condition of Landau and Hardy type; slow decrease; ordered linear space; Cesàro summability; Tauberian theorem; complex-valued sequences},

language = {eng},

number = {1},

pages = {83-96},

title = {Tauberian theorems for Cesàro summable double sequences},

url = {http://eudml.org/doc/216100},

volume = {110},

year = {1994},

}

TY - JOUR

AU - Móricz, Ferenc

TI - Tauberian theorems for Cesàro summable double sequences

JO - Studia Mathematica

PY - 1994

VL - 110

IS - 1

SP - 83

EP - 96

AB - $(s_{jk}: j,k = 0,1,...)$ be a double sequence of real numbers which is summable (C,1,1) to a finite limit. We give necessary and sufficient conditions under which $(s_{jk})$ converges in Pringsheim’s sense. These conditions are satisfied if $(s_{jk})$ is slowly decreasing in certain senses defined in this paper. Among other things we deduce the following Tauberian theorem of Landau and Hardy type: If $(s_{jk})$ is summable (C,1,1) to a finite limit and there exist constants $n_1 > 0$ and H such that $jk(s_{jk} - s_{j-1,k} - s_{j-1,k} + s_{j-1,k-1}) ≥ -H$, $j(s_{jk} - s_{j-1, k}) ≥ -H$ and $k(s_{jk} - s_{j,k-1}) ≥ -H$ whenever $j,k > n_1$, then $(s_{jk})$ converges. We always mean convergence in Pringsheim’s sense. Our method is suitable to obtain analogous Tauberian results for double sequences of complex numbers or for those in an ordered linear space over the real numbers.

LA - eng

KW - double sequence; convergence in Pringsheim's sense; summability (C,1,1); (C,1,0) and (C,0,1); one-sided Tauberian condition of Landau and Hardy type; slow decrease; ordered linear space; Cesàro summability; Tauberian theorem; complex-valued sequences

UR - http://eudml.org/doc/216100

ER -

## References

top- [1] G. H. Hardy, Divergent Series, Univ. Press, Oxford, 1956. Zbl0897.01044
- [2] E. Landau, Über die Bedeutung einiger neuerer Grenzwertsätze der Herren Hardy und Axer, Prace Mat.-Fiz. 21 (1910), 97-177. Zbl41.0241.01
- [3] I. J. Maddox, A Tauberian theorem for ordered spaces, Analysis 9 (1989), 297-302. Zbl0677.40003
- [4] F. Móricz, Necessary and sufficient Tauberian conditions, under which convergence follows from summability (C,1), Bull. London Math. Soc., to appear. Zbl0812.40004
- [5] R. Schmidt, Über divergente Folgen und lineare Mittelbindungen, Math. Z. 22 (1925), 89-152. Zbl51.0182.04
- [6] A. Zygmund, Trigonometric Series, Univ. Press, Cambridge, 1959. Zbl0085.05601

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.