Domains of integral operators
Studia Mathematica (1994)
- Volume: 111, Issue: 1, page 53-68
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topLabuda, Iwo, and Szeptycki, Paweł. "Domains of integral operators." Studia Mathematica 111.1 (1994): 53-68. <http://eudml.org/doc/216119>.
@article{Labuda1994,
abstract = {It is shown that the proper domains of integral operators have separating duals but in general they are not locally convex. Banach function spaces which can occur as proper domains are characterized. Some known and some new results are given, illustrating the usefulness of the notion of proper domain.},
author = {Labuda, Iwo, Szeptycki, Paweł},
journal = {Studia Mathematica},
keywords = {integral operator; proper domain; domains of integral operators; linear integral operators; Banach function spaces; proper domains},
language = {eng},
number = {1},
pages = {53-68},
title = {Domains of integral operators},
url = {http://eudml.org/doc/216119},
volume = {111},
year = {1994},
}
TY - JOUR
AU - Labuda, Iwo
AU - Szeptycki, Paweł
TI - Domains of integral operators
JO - Studia Mathematica
PY - 1994
VL - 111
IS - 1
SP - 53
EP - 68
AB - It is shown that the proper domains of integral operators have separating duals but in general they are not locally convex. Banach function spaces which can occur as proper domains are characterized. Some known and some new results are given, illustrating the usefulness of the notion of proper domain.
LA - eng
KW - integral operator; proper domain; domains of integral operators; linear integral operators; Banach function spaces; proper domains
UR - http://eudml.org/doc/216119
ER -
References
top- [AS] N. Aronszajn and P. Szeptycki, On general integral transformations, Math. Ann. 163 (1966), 127-154. Zbl0171.12402
- [B] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math. 3 (1922), 133-181. Zbl48.0201.01
- [D] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992. Zbl0776.42018
- [Dr] L. Drewnowski, On subseries convergence in some function spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 797-802. Zbl0297.28014
- [F] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, Wiley, 1966. Zbl0138.10207
- [G] E. Gagliardo, On integral transformations with positive kernel, Proc. Amer. Math. Soc. 16 (1965), 429-434. Zbl0161.32404
- [HS] P. R. Halmos and V. S. Sunder, Bounded Integral Operators in Spaces, Springer, 1978. Zbl0389.47001
- [K] V. B. Korotkov, Integral Operators, Nauka, Novosibirsk, 1983 (in Russian). Zbl0526.47015
- [MN] P. Meyer-Nieberg, Banach Lattices, Springer, 1991. Zbl0743.46015
- [N] E. M. Nikishin, Theorems of resonance and nonlinear operators, Uspekhi Mat. Nauk 25 (6) (1970), 129-191 (in Russian). Zbl0222.47024
- [R] S. Rolewicz, Metric Linear Spaces, PWN, Warszawa, 1972.
- [P] B. de Pagter, A note on integral operators, Acta Sci. Math. (Szeged) 50 (1986), 225-230. Zbl0631.47018
- [Sc] A. R. Schep, Kernel operators, thesis, Leiden, 1977.
- [Su] V. S. Sunder, Absolutely bounded matrices, Indiana Univ. Math. J. 27 (1978), 919-927. Zbl0419.47011
- [Z] A. C. Zaanen, Riesz Spaces, II, North-Holland, 1983.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.