# Domains of integral operators

Studia Mathematica (1994)

- Volume: 111, Issue: 1, page 53-68
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topLabuda, Iwo, and Szeptycki, Paweł. "Domains of integral operators." Studia Mathematica 111.1 (1994): 53-68. <http://eudml.org/doc/216119>.

@article{Labuda1994,

abstract = {It is shown that the proper domains of integral operators have separating duals but in general they are not locally convex. Banach function spaces which can occur as proper domains are characterized. Some known and some new results are given, illustrating the usefulness of the notion of proper domain.},

author = {Labuda, Iwo, Szeptycki, Paweł},

journal = {Studia Mathematica},

keywords = {integral operator; proper domain; domains of integral operators; linear integral operators; Banach function spaces; proper domains},

language = {eng},

number = {1},

pages = {53-68},

title = {Domains of integral operators},

url = {http://eudml.org/doc/216119},

volume = {111},

year = {1994},

}

TY - JOUR

AU - Labuda, Iwo

AU - Szeptycki, Paweł

TI - Domains of integral operators

JO - Studia Mathematica

PY - 1994

VL - 111

IS - 1

SP - 53

EP - 68

AB - It is shown that the proper domains of integral operators have separating duals but in general they are not locally convex. Banach function spaces which can occur as proper domains are characterized. Some known and some new results are given, illustrating the usefulness of the notion of proper domain.

LA - eng

KW - integral operator; proper domain; domains of integral operators; linear integral operators; Banach function spaces; proper domains

UR - http://eudml.org/doc/216119

ER -

## References

top- [AS] N. Aronszajn and P. Szeptycki, On general integral transformations, Math. Ann. 163 (1966), 127-154. Zbl0171.12402
- [B] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math. 3 (1922), 133-181. Zbl48.0201.01
- [D] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992. Zbl0776.42018
- [Dr] L. Drewnowski, On subseries convergence in some function spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 797-802. Zbl0297.28014
- [F] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, Wiley, 1966. Zbl0138.10207
- [G] E. Gagliardo, On integral transformations with positive kernel, Proc. Amer. Math. Soc. 16 (1965), 429-434. Zbl0161.32404
- [HS] P. R. Halmos and V. S. Sunder, Bounded Integral Operators in ${L}^{2}$ Spaces, Springer, 1978. Zbl0389.47001
- [K] V. B. Korotkov, Integral Operators, Nauka, Novosibirsk, 1983 (in Russian). Zbl0526.47015
- [MN] P. Meyer-Nieberg, Banach Lattices, Springer, 1991. Zbl0743.46015
- [N] E. M. Nikishin, Theorems of resonance and nonlinear operators, Uspekhi Mat. Nauk 25 (6) (1970), 129-191 (in Russian). Zbl0222.47024
- [R] S. Rolewicz, Metric Linear Spaces, PWN, Warszawa, 1972.
- [P] B. de Pagter, A note on integral operators, Acta Sci. Math. (Szeged) 50 (1986), 225-230. Zbl0631.47018
- [Sc] A. R. Schep, Kernel operators, thesis, Leiden, 1977.
- [Su] V. S. Sunder, Absolutely bounded matrices, Indiana Univ. Math. J. 27 (1978), 919-927. Zbl0419.47011
- [Z] A. C. Zaanen, Riesz Spaces, II, North-Holland, 1983.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.