Some Sawyer type inequalities for martingales

Xiang-Qian Chang

Studia Mathematica (1994)

  • Volume: 111, Issue: 2, page 187-194
  • ISSN: 0039-3223

Abstract

top
Some martingale analogues of Sawyer's two-weight norm inequality for the Hardy-Littlewood maximal function Mf are shown for the Doob maximal function of martingales.

How to cite

top

Chang, Xiang-Qian. "Some Sawyer type inequalities for martingales." Studia Mathematica 111.2 (1994): 187-194. <http://eudml.org/doc/216127>.

@article{Chang1994,
abstract = {Some martingale analogues of Sawyer's two-weight norm inequality for the Hardy-Littlewood maximal function Mf are shown for the Doob maximal function of martingales.},
author = {Chang, Xiang-Qian},
journal = {Studia Mathematica},
keywords = {Sawyer's two-weight norm inequality; Hardy-Littlewood maximal function; Doob maximal function; martingales},
language = {eng},
number = {2},
pages = {187-194},
title = {Some Sawyer type inequalities for martingales},
url = {http://eudml.org/doc/216127},
volume = {111},
year = {1994},
}

TY - JOUR
AU - Chang, Xiang-Qian
TI - Some Sawyer type inequalities for martingales
JO - Studia Mathematica
PY - 1994
VL - 111
IS - 2
SP - 187
EP - 194
AB - Some martingale analogues of Sawyer's two-weight norm inequality for the Hardy-Littlewood maximal function Mf are shown for the Doob maximal function of martingales.
LA - eng
KW - Sawyer's two-weight norm inequality; Hardy-Littlewood maximal function; Doob maximal function; martingales
UR - http://eudml.org/doc/216127
ER -

References

top
  1. [1] J. L. Doob, Stochastic Processes, Wiley, New York, 1953. Zbl0053.26802
  2. [2] R. A. Hunt, D. S. Kurtz and C. J. Neugebauer, A note on the equivalence of and Sawyer’s condition for equal weights, in: Conf. Harmonic Analysis in Honor of A. Zygmund, Wadsworth, Belmont, Calif., 1981, 156-158. 
  3. [3] M. Izumisawa and N. Kazamaki, Weighted norm inequalities for martingales, Tôhoku Math. J. 29 (1977), 115-124. Zbl0359.60050
  4. [4] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. Zbl0236.26016
  5. [5] E. Sawyer, A characterization of a two weight norm inequality for maximal operators, Studia Math. 75 (1982), 1-11. Zbl0508.42023

NotesEmbed ?

top

You must be logged in to post comments.