From weak to strong types of L E 1 -convergence by the Bocce criterion

Erik Balder; Maria Girardi; Vincent Jalby

Studia Mathematica (1994)

  • Volume: 111, Issue: 3, page 241-262
  • ISSN: 0039-3223

Abstract

top
Necessary and sufficient oscillation conditions are given for a weakly convergent sequence (resp. relatively weakly compact set) in the Bochner-Lebesgue space E 1 to be norm convergent (resp. relatively norm compact), thus extending the known results for 1 . Similarly, necessary and sufficient oscillation conditions are given to pass from weak to limited (and also to Pettis-norm) convergence in E 1 . It is shown that tightness is a necessary and sufficient condition to pass from limited to strong convergence. Other implications between several modes of convergence in E 1 are also studied.

How to cite

top

Balder, Erik, Girardi, Maria, and Jalby, Vincent. "From weak to strong types of $L^{1}_{E}$-convergence by the Bocce criterion." Studia Mathematica 111.3 (1994): 241-262. <http://eudml.org/doc/216131>.

@article{Balder1994,
abstract = {Necessary and sufficient oscillation conditions are given for a weakly convergent sequence (resp. relatively weakly compact set) in the Bochner-Lebesgue space $ℒ^\{1\}_\{E\}$ to be norm convergent (resp. relatively norm compact), thus extending the known results for $ℒ^\{1\}_\{ℝ\}$. Similarly, necessary and sufficient oscillation conditions are given to pass from weak to limited (and also to Pettis-norm) convergence in $ℒ^\{1\}_\{E\}$. It is shown that tightness is a necessary and sufficient condition to pass from limited to strong convergence. Other implications between several modes of convergence in $ℒ^\{1\}_\{E\}$ are also studied.},
author = {Balder, Erik, Girardi, Maria, Jalby, Vincent},
journal = {Studia Mathematica},
keywords = {weak convergence; Radon-Nikodým property; Bocce criterion; oscillation condition; limited convergence; strong convergence; tightness; Pettis norm},
language = {eng},
number = {3},
pages = {241-262},
title = {From weak to strong types of $L^\{1\}_\{E\}$-convergence by the Bocce criterion},
url = {http://eudml.org/doc/216131},
volume = {111},
year = {1994},
}

TY - JOUR
AU - Balder, Erik
AU - Girardi, Maria
AU - Jalby, Vincent
TI - From weak to strong types of $L^{1}_{E}$-convergence by the Bocce criterion
JO - Studia Mathematica
PY - 1994
VL - 111
IS - 3
SP - 241
EP - 262
AB - Necessary and sufficient oscillation conditions are given for a weakly convergent sequence (resp. relatively weakly compact set) in the Bochner-Lebesgue space $ℒ^{1}_{E}$ to be norm convergent (resp. relatively norm compact), thus extending the known results for $ℒ^{1}_{ℝ}$. Similarly, necessary and sufficient oscillation conditions are given to pass from weak to limited (and also to Pettis-norm) convergence in $ℒ^{1}_{E}$. It is shown that tightness is a necessary and sufficient condition to pass from limited to strong convergence. Other implications between several modes of convergence in $ℒ^{1}_{E}$ are also studied.
LA - eng
KW - weak convergence; Radon-Nikodým property; Bocce criterion; oscillation condition; limited convergence; strong convergence; tightness; Pettis norm
UR - http://eudml.org/doc/216131
ER -

References

top
  1. [ACV] A. Amrani, C. Castaing et M. Valadier, Méthodes de troncature appliquées à des problèmes de convergence faible ou forte dans L 1 , Arch. Rational Mech. Anal. 117 (1992), 167-191. 
  2. [B1] E. J. Balder, On weak convergence implying strong convergence in L 1 -spaces, Bull. Austral. Math. Soc. 33 (1986), 363-368. Zbl0579.46018
  3. [B2] E. J. Balder, On equivalence of strong and weak convergence in L 1 -spaces under extreme point conditions, Israel J. Math. 75 (1991), 1-23. 
  4. [B3] E. J. Balder, From weak to strong L 1 -convergence by an oscillation restriction criterion of BMO type, preprint No. 666, Dept. of Math., University of Utrecht, 1991. 
  5. [B4] E. J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Optim. 22 (1984), 570-598. Zbl0549.49005
  6. [B5] E. J. Balder, On Prohorov's theorem for transition probabilities, Sém. Anal. Convexe 19 (1989), 9.1-9.11. Zbl0732.60007
  7. [BH1] J. Batt and W. Hiermeyer, Weak compactness in the space of Bochner integrable functions, unpublished manuscript, 1980. 
  8. [BH2] J. Batt and W. Hiermeyer, On compactness in L p ( μ , X ) in the weak topology and in the topology σ ( L p ( μ , X ) , L q ( μ , X ' ) ) , Math. Z. 182 (1983), 409-423. Zbl0491.46010
  9. [BS] J. Batt and G. Schlüchtermann, Eberlein compacts in L 1 ( X ) , Studia Math. 83 (1986), 239-250. Zbl0555.46014
  10. [BD] J. K. Brooks and N. Dinculeanu, Weak compactness in spaces of Bochner integrable functions, Adv. in Math. 24 (1977), 172-188. Zbl0354.46026
  11. [C1] C. Castaing, Un résultat de compacité lié à la propriété des ensembles Dunford-Pettis dans L F 1 ( Ω , A , μ ) , Sém. Anal. Convexe 9 (1979), 17.1-17.7. 
  12. [C2] C. Castaing, Sur la décomposition de Slaby. Applications aux problèmes de convergences en probabilités. Economie mathématique. Théorie du contrôle. Minimisation, Sém. Anal. Convexe 19 (1989), 3.1-3.35. 
  13. [CV] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, Berlin, 1977. Zbl0346.46038
  14. [Da] B. Dawson, Convergence of conditional expectation operators and the compact range property, Ph.D. dissertation, University of North Texas, 1992. 
  15. [D1] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, New York, 1984. 
  16. [D2] J. Diestel, Uniform integrability: an introduction, School on Measure Theory and Real Analysis, Grado (Italy), October 14-25, 1991, Rend. Istit. Mat. Univ. Trieste 23 (1991), 41-80. 
  17. [DU] J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Providence, 1977. 
  18. [DG] S. J. Dilworth and M. Girardi, Bochner vs. Pettis norms: examples and results, in: Banach Spaces, Bor-Luh Lin and W. B. Johnson (eds.), Contemp. Math. 144, Amer. Math. Soc., Providence, R.I., 1993, 69-80. 
  19. [Ga] V. F. Gaposhkin, Convergence and limit theorems for sequences of random variables, Theory Probab. Appl. 17 (1972), 379-400. 
  20. [G1] M. Girardi, Compactness in L 1 , Dunford-Pettis operators, geometry of Banach spaces, Proc. Amer. Math. Soc. 111 (1991), 767-777. Zbl0733.47029
  21. [G2] M. Girardi, Weak vs. norm compactness in L 1 , the Bocce criterion, Studia Math. 98 (1991), 95-97. Zbl0732.47027
  22. [HU] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182. Zbl0368.60006
  23. [IT] A. and C. Ionescu-Tulcea, Topics in the Theory of Lifting, Springer, Berlin, 1969. Zbl0179.46303
  24. [J] V. Jalby, Contribution aux problèmes de convergence des fonctions vectorielles et des intégrales fonctionnelles, Thèse de Doctorat, Université Montpellier II, 1993. 
  25. [Jaw] A. Jawhar, Mesures de transition et applications, Sém. Anal. Convexe 14 (1984), 13.1-13.62. 
  26. [N] J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, 1965. Zbl0137.11301
  27. [P] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304. Zbl0019.41603
  28. [SW] G. Schlüchtermann and R. F. Wheeler, On strongly WCG Banach spaces, Math. Z. 199 (1988), 387-398. Zbl0637.46011
  29. [S] L. Schwartz, Radon Measures, Oxford University Press, London, 1973. 
  30. [T] M. Talagrand, Weak Cauchy sequences in L 1 ( E ) , Amer. J. Math. 106 (1984), 703-724. Zbl0579.46025
  31. [V1] M. Valadier, Young measures, in: Methods of Nonconvex Analysis, A. Cellina (ed.), Lecture Notes in Math. 1446, Springer, Berlin, 1990, 152-188. 
  32. [V2] M. Valadier, Oscillations et compacité forte dans L 1 , Sém. Anal. Convexe 21 (1991), 7.1-7.10. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.