ω-Calderón-Zygmund operators

Sijue Wu

Studia Mathematica (1995)

  • Volume: 112, Issue: 2, page 127-139
  • ISSN: 0039-3223

Abstract

top
We prove a T1 theorem and develop a version of Calderón-Zygmund theory for ω-CZO when ω A .

How to cite

top

Wu, Sijue. "ω-Calderón-Zygmund operators." Studia Mathematica 112.2 (1995): 127-139. <http://eudml.org/doc/216142>.

@article{Wu1995,
abstract = {We prove a T1 theorem and develop a version of Calderón-Zygmund theory for ω-CZO when $ω ∈ A_∞$.},
author = {Wu, Sijue},
journal = {Studia Mathematica},
keywords = {weighted Hardy spaces; weighted BMO; Calderón-Zygmund operator; weak boundedness property; -WBP; theorem},
language = {eng},
number = {2},
pages = {127-139},
title = {ω-Calderón-Zygmund operators},
url = {http://eudml.org/doc/216142},
volume = {112},
year = {1995},
}

TY - JOUR
AU - Wu, Sijue
TI - ω-Calderón-Zygmund operators
JO - Studia Mathematica
PY - 1995
VL - 112
IS - 2
SP - 127
EP - 139
AB - We prove a T1 theorem and develop a version of Calderón-Zygmund theory for ω-CZO when $ω ∈ A_∞$.
LA - eng
KW - weighted Hardy spaces; weighted BMO; Calderón-Zygmund operator; weak boundedness property; -WBP; theorem
UR - http://eudml.org/doc/216142
ER -

References

top
  1. [1] J. Bergh and J. Löfström, Interpolation Spaces, Springer, New York, 1976. Zbl0344.46071
  2. [2] D. L. Burkholder, Martingale theory and harmonic analysis in Euclidean spaces, in: Proc. Sympos. Pure Math. 35, Part 2, Amer. Math. Soc., 1979, 283-301. Zbl0417.60055
  3. [3] R. Coifman, G. David, Y. Meyer and S. Semmes, ω-Calderón-Zygmund operators, in: Lecture Notes in Math. 1384, Springer, 1989, 132-145. 
  4. [4] G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371-397. Zbl0567.47025
  5. [5] J. Garcí a-Cuerva, Weighted H p -spaces, Dissertationes Math. 162 (1979). 
  6. [6] J. Garcí a-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, 1985. 
  7. [7] J.-L. Journé, Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón, Lecture Notes in Math. 994, Springer, 1983. Zbl0508.42021
  8. [8] T. H. Wolff, A note on interpolation spaces, in: Lecture Notes in Math. 908, Springer, 1981, 199-204. 
  9. [9] S. Wu, A wavelet characterization for weighted Hardy spaces, Rev. Mat. Iberoamericana 8 (1992), 329-349. Zbl0769.42011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.