ω-Calderón-Zygmund operators
Studia Mathematica (1995)
- Volume: 112, Issue: 2, page 127-139
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topWu, Sijue. "ω-Calderón-Zygmund operators." Studia Mathematica 112.2 (1995): 127-139. <http://eudml.org/doc/216142>.
@article{Wu1995,
abstract = {We prove a T1 theorem and develop a version of Calderón-Zygmund theory for ω-CZO when $ω ∈ A_∞$.},
author = {Wu, Sijue},
journal = {Studia Mathematica},
keywords = {weighted Hardy spaces; weighted BMO; Calderón-Zygmund operator; weak boundedness property; -WBP; theorem},
language = {eng},
number = {2},
pages = {127-139},
title = {ω-Calderón-Zygmund operators},
url = {http://eudml.org/doc/216142},
volume = {112},
year = {1995},
}
TY - JOUR
AU - Wu, Sijue
TI - ω-Calderón-Zygmund operators
JO - Studia Mathematica
PY - 1995
VL - 112
IS - 2
SP - 127
EP - 139
AB - We prove a T1 theorem and develop a version of Calderón-Zygmund theory for ω-CZO when $ω ∈ A_∞$.
LA - eng
KW - weighted Hardy spaces; weighted BMO; Calderón-Zygmund operator; weak boundedness property; -WBP; theorem
UR - http://eudml.org/doc/216142
ER -
References
top- [1] J. Bergh and J. Löfström, Interpolation Spaces, Springer, New York, 1976. Zbl0344.46071
- [2] D. L. Burkholder, Martingale theory and harmonic analysis in Euclidean spaces, in: Proc. Sympos. Pure Math. 35, Part 2, Amer. Math. Soc., 1979, 283-301. Zbl0417.60055
- [3] R. Coifman, G. David, Y. Meyer and S. Semmes, ω-Calderón-Zygmund operators, in: Lecture Notes in Math. 1384, Springer, 1989, 132-145.
- [4] G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371-397. Zbl0567.47025
- [5] J. Garcí a-Cuerva, Weighted -spaces, Dissertationes Math. 162 (1979).
- [6] J. Garcí a-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, 1985.
- [7] J.-L. Journé, Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón, Lecture Notes in Math. 994, Springer, 1983. Zbl0508.42021
- [8] T. H. Wolff, A note on interpolation spaces, in: Lecture Notes in Math. 908, Springer, 1981, 199-204.
- [9] S. Wu, A wavelet characterization for weighted Hardy spaces, Rev. Mat. Iberoamericana 8 (1992), 329-349. Zbl0769.42011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.