# Ambiguous loci of the farthest distance mapping from compact convex sets

Studia Mathematica (1995)

- Volume: 112, Issue: 2, page 99-107
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topDe Blasi, F., and Myjak, J.. "Ambiguous loci of the farthest distance mapping from compact convex sets." Studia Mathematica 112.2 (1995): 99-107. <http://eudml.org/doc/216147>.

@article{DeBlasi1995,

abstract = {Let be a strictly convex separable Banach space of dimension at least 2. Let K() be the space of all nonempty compact convex subsets of endowed with the Hausdorff distance. Denote by $K^0$ the set of all X ∈ K() such that the farthest distance mapping $a ↦ M_X(a)$ is multivalued on a dense subset of . It is proved that $K^0$ is a residual dense subset of K().},

author = {De Blasi, F., Myjak, J.},

journal = {Studia Mathematica},

keywords = {convex sets; farthest points; distance mapping},

language = {eng},

number = {2},

pages = {99-107},

title = {Ambiguous loci of the farthest distance mapping from compact convex sets},

url = {http://eudml.org/doc/216147},

volume = {112},

year = {1995},

}

TY - JOUR

AU - De Blasi, F.

AU - Myjak, J.

TI - Ambiguous loci of the farthest distance mapping from compact convex sets

JO - Studia Mathematica

PY - 1995

VL - 112

IS - 2

SP - 99

EP - 107

AB - Let be a strictly convex separable Banach space of dimension at least 2. Let K() be the space of all nonempty compact convex subsets of endowed with the Hausdorff distance. Denote by $K^0$ the set of all X ∈ K() such that the farthest distance mapping $a ↦ M_X(a)$ is multivalued on a dense subset of . It is proved that $K^0$ is a residual dense subset of K().

LA - eng

KW - convex sets; farthest points; distance mapping

UR - http://eudml.org/doc/216147

ER -

## References

top- [1] E. Asplund, Farthest points in reflexive locally uniformly rotund Banach spaces, Israel J. Math. 4 (1966), 213-216. Zbl0143.34904
- [2] K. Bartke and H. Berens, Eine Beschreibung der Nichteindeutigkeitsmenge für die beste Approximation in der Euklidischen Ebene, J. Approx. Theory 47 (1986), 54-74. Zbl0619.41020
- [3] J. M. Borwein and S. Fitzpatrick, Existence of nearest points in Banach spaces, Canad. J. Math. 41 (1989), 702-720. Zbl0668.46006
- [4] F. S. De Blasi, J. Myjak and P. L. Papini, Porous sets in best approximation theory, J. London Math. Soc. (2) 44 (1991), 135-142. Zbl0786.41027
- [5] R. Deville and V. Zizler, Farthest points in w*-compact sets, Bull. Austral. Math. Soc. 38 (1988), 433-439. Zbl0656.46012
- [6] N. Dunford and J. T. Schwartz, Linear Operators, Vol. I, Interscience, New York, 1958. Zbl0084.10402
- [7] M. Edelstein, Farthest points of sets in uniformly convex Banach spaces, Israel J. Math. 4 (1966), 171-176. Zbl0151.17601
- [8] P. M. Gruber, Die meisten konvexen Körper sind glatt, aber nicht zu glatt, Math. Ann. 229 (1977), 259-266. Zbl0342.52009
- [9] K. S. Lau, Farthest points in weakly compact sets, Israel J. Math. 22 (1975), 168-174. Zbl0325.46022
- [10] V. Klee, Some new results on smoothness and rotundity in normed linear spaces, Math. Ann. 139 (1959), 51-63. Zbl0092.11602
- [11] S. Miyajima and F. Wada, Uniqueness of a farthest point in a bounded closed set in Banach spaces, preprint. Zbl0798.46009
- [12] B. B. Panda and K. Dwivedi, On existence of farthest points, Indian J. Pure Appl. Math. 16 (1985), 486-490. Zbl0584.46008
- [13] T. Zajíček, On the Fréchet differentiability of distance functions, Rend. Circ. Mat. Palermo (2) Suppl. 5 (1985), 161-165. Zbl0581.41028
- [14] T. Zamfirescu, Using Baire category in geometry, Rend. Sem. Mat. Univers. Politec. Torino 43 (1985), 67-88. Zbl0601.52004
- [15] T. Zamfirescu, The nearest point mapping is single valued nearly everywhere, Arch. Math. (Basel) 54 (1990), 563-566. Zbl0715.54013