Mild integrated C-existence families
Studia Mathematica (1995)
- Volume: 112, Issue: 3, page 251-266
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topWang, Shen. "Mild integrated C-existence families." Studia Mathematica 112.3 (1995): 251-266. <http://eudml.org/doc/216152>.
@article{Wang1995,
abstract = {We study mild n times integrated C-existence families without the assumption of exponential boundedness. We present several equivalent conditions for these families. Hille-Yosida type necessary and sufficient conditions are given for the exponentially bounded case.},
author = {Wang, Shen},
journal = {Studia Mathematica},
keywords = { times integrated -existence families without the assumption of exponential boundedness; Hille-Yosida type necessary and sufficient conditions},
language = {eng},
number = {3},
pages = {251-266},
title = {Mild integrated C-existence families},
url = {http://eudml.org/doc/216152},
volume = {112},
year = {1995},
}
TY - JOUR
AU - Wang, Shen
TI - Mild integrated C-existence families
JO - Studia Mathematica
PY - 1995
VL - 112
IS - 3
SP - 251
EP - 266
AB - We study mild n times integrated C-existence families without the assumption of exponential boundedness. We present several equivalent conditions for these families. Hille-Yosida type necessary and sufficient conditions are given for the exponentially bounded case.
LA - eng
KW - times integrated -existence families without the assumption of exponential boundedness; Hille-Yosida type necessary and sufficient conditions
UR - http://eudml.org/doc/216152
ER -
References
top- [1] W. Arendt, Vector valued Laplaced transforms and Cauchy problems, Israel J. Math. 59 (1987), 327-352. Zbl0637.44001
- [2] G. Da Prato, Semigruppi regolarizzabili, Ricerche Mat. 15 (1966), 223-248.
- [3] F. B. Davies and M. M. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc. (3) 55 (1987), 181-208. Zbl0651.47026
- [4] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985. Zbl0592.47034
- [5] M. Hieber and H. Kellerman, Integrated semigroups, J. Funct. Anal. 84 (1989), 160-180. Zbl0689.47014
- [6] R. deLaubenfels, C-semigroups and the Cauchy problem, J. Funct. Anal., to appear.
- [7] R. deLaubenfels, Integrated semigroups, C-semigroups and the abstract Cauchy problem, Semigroup Forum 41 (1990), 83-95. Zbl0717.47014
- [8] R. deLaubenfels, Existence and uniqueness families for the abstract Cauchy problem, J. London Math. Soc. (2) 44 (1991), 310-338. Zbl0766.47011
- [9] R. deLaubenfels, C-semigroups and strongly continuous semigroups, Israel J. Math., to appear. Zbl0803.47034
- [10] R. deLaubenfels, Automatic well-posedness, preprint.
- [11] I. Miyadera, A generalization of the Hille-Yosida theorem, Proc. Japan Acad. Ser. A 64 (1988), 223-226. Zbl0683.47027
- [12] I. Miyadera and N. Tanaka, Exponentially bounded C-semigroups and generation of semigroups, J. Math. Anal. Appl. 143 (1989), 358-378. Zbl0697.47039
- [13] I. Miyadera and N. Tanaka, Exponentially bounded C-semigroups and integrated semigroups, Tokyo J. Math. 12 (1989), 99-115. Zbl0702.47028
- [14] F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pacific J. Math. 135 (1988), 111-157. Zbl0675.47030
- [15] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
- [16] N. Tanaka, On the exponentially bounded C-semigroups, Tokyo J. Math. 10 (1987), 107-117. Zbl0631.47029
- [17] H. R. Thieme, "Integrated semigroups" and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl. 152 (1990), 416-447. Zbl0738.47037
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.