Polynomial asymptotics and approximation of Sobolev functions
Piotr Hajłasz; Agnieszka Kałamajska
Studia Mathematica (1995)
- Volume: 113, Issue: 1, page 55-64
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topHajłasz, Piotr, and Kałamajska, Agnieszka. "Polynomial asymptotics and approximation of Sobolev functions." Studia Mathematica 113.1 (1995): 55-64. <http://eudml.org/doc/216159>.
@article{Hajłasz1995,
abstract = {We prove several results concerning density of $C_\{0\}^\{∞\}$, behaviour at infinity and integral representations for elements of the space $L^\{m,p\} = \{⨍ | ∇^\{m\}⨍ ∈ L^p\}$.},
author = {Hajłasz, Piotr, Kałamajska, Agnieszka},
journal = {Studia Mathematica},
keywords = {Sobolev space; Beppo Levi space; approximation; polynomial asymptotics; density of $C_0^∞$ functions; integral representations for elements of the space },
language = {eng},
number = {1},
pages = {55-64},
title = {Polynomial asymptotics and approximation of Sobolev functions},
url = {http://eudml.org/doc/216159},
volume = {113},
year = {1995},
}
TY - JOUR
AU - Hajłasz, Piotr
AU - Kałamajska, Agnieszka
TI - Polynomial asymptotics and approximation of Sobolev functions
JO - Studia Mathematica
PY - 1995
VL - 113
IS - 1
SP - 55
EP - 64
AB - We prove several results concerning density of $C_{0}^{∞}$, behaviour at infinity and integral representations for elements of the space $L^{m,p} = {⨍ | ∇^{m}⨍ ∈ L^p}$.
LA - eng
KW - Sobolev space; Beppo Levi space; approximation; polynomial asymptotics; density of $C_0^∞$ functions; integral representations for elements of the space
UR - http://eudml.org/doc/216159
ER -
References
top- [1] H. Aikawa, On weighted Beppo Levi functions-integral representations and behavior at infinity, Analysis 9 (1989), 323-346. Zbl0697.31004
- [2] O. V. Besov, The behaviour of differentiable functions at infinity and density of functions, Trudy Mat. Inst. Steklov. 105 (1969), 3-14 (in Russian).
- [3] O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, Integral Representations of Functions and Imbedding Theorems, Moscow, Nauka, 1975 (in Russian).
- [4] J. Deny and J.-L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble) 5 (1953-1954), 305-370. Zbl0065.09903
- [5] T. Iwaniec and G. Martin, Quasiregular mappings in even dimensions, Acta Math. 170 (1993), 29-81. Zbl0785.30008
- [6] P. I. Lizorkin, On the behaviour at infinity of functions from the Liouville class. On Riesz potentials of an arbitrary order, Trudy Mat. Inst. Steklov. 150 (1979), 174-197 (in Russian). Zbl0417.46041
- [7] V. M. Maz'ya, Sobolev Spaces, Springer, 1985.
- [8] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J. 4 (1974), 375-396. Zbl0287.31005
- [9] O. Nikodym, Sur une classe de fonctions considérées dans le problème de Dirichlet, Fund. Math. 21 (1933), 129-150. Zbl0008.15903
- [10] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa 13 (1959), 115-162. Zbl0088.07601
- [11] V. N. Sedov, On functions tending to a polynomial at infinity, in: Imbedding Theorems and Their Applications (Proc. Sympos. Imbedding Theorems, Baku, 1966), Moscow, 1970, 204-212 (in Russian).
- [12] K. T. Smith, Formulas to represent functions by their derivatives, Math. Ann. 188 (1970), 53-77. Zbl0187.03102
- [13] S. L. Sobolev, The density of functions in the space, Dokl. Akad. Nauk SSSR 149 (1963), 40-43 (in Russian); English transl.: Soviet Math. Dokl. 4 (1963), 313-316.
- [14] S. L. Sobolev, The density of finite functions in the space, Sibirsk. Mat. Zh. 4 (1963), 673-682 (in Russian). Zbl0204.43802
- [15] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. Zbl0207.13501
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.