Polynomial asymptotics and approximation of Sobolev functions

Piotr Hajłasz; Agnieszka Kałamajska

Studia Mathematica (1995)

  • Volume: 113, Issue: 1, page 55-64
  • ISSN: 0039-3223

Abstract

top
We prove several results concerning density of C 0 , behaviour at infinity and integral representations for elements of the space L m , p = | m L p .

How to cite

top

Hajłasz, Piotr, and Kałamajska, Agnieszka. "Polynomial asymptotics and approximation of Sobolev functions." Studia Mathematica 113.1 (1995): 55-64. <http://eudml.org/doc/216159>.

@article{Hajłasz1995,
abstract = {We prove several results concerning density of $C_\{0\}^\{∞\}$, behaviour at infinity and integral representations for elements of the space $L^\{m,p\} = \{⨍ | ∇^\{m\}⨍ ∈ L^p\}$.},
author = {Hajłasz, Piotr, Kałamajska, Agnieszka},
journal = {Studia Mathematica},
keywords = {Sobolev space; Beppo Levi space; approximation; polynomial asymptotics; density of $C_0^∞$ functions; integral representations for elements of the space },
language = {eng},
number = {1},
pages = {55-64},
title = {Polynomial asymptotics and approximation of Sobolev functions},
url = {http://eudml.org/doc/216159},
volume = {113},
year = {1995},
}

TY - JOUR
AU - Hajłasz, Piotr
AU - Kałamajska, Agnieszka
TI - Polynomial asymptotics and approximation of Sobolev functions
JO - Studia Mathematica
PY - 1995
VL - 113
IS - 1
SP - 55
EP - 64
AB - We prove several results concerning density of $C_{0}^{∞}$, behaviour at infinity and integral representations for elements of the space $L^{m,p} = {⨍ | ∇^{m}⨍ ∈ L^p}$.
LA - eng
KW - Sobolev space; Beppo Levi space; approximation; polynomial asymptotics; density of $C_0^∞$ functions; integral representations for elements of the space
UR - http://eudml.org/doc/216159
ER -

References

top
  1. [1] H. Aikawa, On weighted Beppo Levi functions-integral representations and behavior at infinity, Analysis 9 (1989), 323-346. Zbl0697.31004
  2. [2] O. V. Besov, The behaviour of differentiable functions at infinity and density of C 0 functions, Trudy Mat. Inst. Steklov. 105 (1969), 3-14 (in Russian). 
  3. [3] O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, Integral Representations of Functions and Imbedding Theorems, Moscow, Nauka, 1975 (in Russian). 
  4. [4] J. Deny and J.-L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble) 5 (1953-1954), 305-370. Zbl0065.09903
  5. [5] T. Iwaniec and G. Martin, Quasiregular mappings in even dimensions, Acta Math. 170 (1993), 29-81. Zbl0785.30008
  6. [6] P. I. Lizorkin, On the behaviour at infinity of functions from the Liouville class. On Riesz potentials of an arbitrary order, Trudy Mat. Inst. Steklov. 150 (1979), 174-197 (in Russian). Zbl0417.46041
  7. [7] V. M. Maz'ya, Sobolev Spaces, Springer, 1985. 
  8. [8] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J. 4 (1974), 375-396. Zbl0287.31005
  9. [9] O. Nikodym, Sur une classe de fonctions considérées dans le problème de Dirichlet, Fund. Math. 21 (1933), 129-150. Zbl0008.15903
  10. [10] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa 13 (1959), 115-162. Zbl0088.07601
  11. [11] V. N. Sedov, On functions tending to a polynomial at infinity, in: Imbedding Theorems and Their Applications (Proc. Sympos. Imbedding Theorems, Baku, 1966), Moscow, 1970, 204-212 (in Russian). 
  12. [12] K. T. Smith, Formulas to represent functions by their derivatives, Math. Ann. 188 (1970), 53-77. Zbl0187.03102
  13. [13] S. L. Sobolev, The density of C 0 functions in the L ( m ) p space, Dokl. Akad. Nauk SSSR 149 (1963), 40-43 (in Russian); English transl.: Soviet Math. Dokl. 4 (1963), 313-316. 
  14. [14] S. L. Sobolev, The density of C 0 finite functions in the L ( m ) p space, Sibirsk. Mat. Zh. 4 (1963), 673-682 (in Russian). Zbl0204.43802
  15. [15] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. Zbl0207.13501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.