On automatic boundedness of Nemytskiĭ set-valued operators
Studia Mathematica (1995)
- Volume: 113, Issue: 1, page 65-72
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topRolewicz, S., and Song, Wen. "On automatic boundedness of Nemytskiĭ set-valued operators." Studia Mathematica 113.1 (1995): 65-72. <http://eudml.org/doc/216160>.
@article{Rolewicz1995,
abstract = {Let X, Y be two separable F-spaces. Let (Ω,Σ,μ) be a measure space with μ complete, non-atomic and σ-finite. Let $N_F$ be the Nemytskiĭ set-valued operator induced by a sup-measurable set-valued function $F:Ω × X → 2^\{Y\}$. It is shown that if $N_F$ maps a modular space $(N(L(Ω,Σ,μ;X)), ϱ_\{N,μ\})$ into subsets of a modular space $(M(L(Ω,Σ,μ;Y)),ϱ_\{M,μ\})$, then $N_F$ is automatically modular bounded, i.e. for each set K ⊂ N(L(Ω,Σ,μ;X)) such that $r_K = sup\{ϱ_\{N,μ\}(x) : x ∈ K\} < ∞$ we have $sup\{ϱ_\{M,μ\}(y): y ∈ N_F(K)\} < ∞$.},
author = {Rolewicz, S., Song, Wen},
journal = {Studia Mathematica},
keywords = {Nemytskiĭ set-valued operators; superposition measurable set-valued operators; automatic boundedness; modular spaces; separable Fréchet spaces; sup-measurable multifunction; superposition operator; bounded on bounded sets},
language = {eng},
number = {1},
pages = {65-72},
title = {On automatic boundedness of Nemytskiĭ set-valued operators},
url = {http://eudml.org/doc/216160},
volume = {113},
year = {1995},
}
TY - JOUR
AU - Rolewicz, S.
AU - Song, Wen
TI - On automatic boundedness of Nemytskiĭ set-valued operators
JO - Studia Mathematica
PY - 1995
VL - 113
IS - 1
SP - 65
EP - 72
AB - Let X, Y be two separable F-spaces. Let (Ω,Σ,μ) be a measure space with μ complete, non-atomic and σ-finite. Let $N_F$ be the Nemytskiĭ set-valued operator induced by a sup-measurable set-valued function $F:Ω × X → 2^{Y}$. It is shown that if $N_F$ maps a modular space $(N(L(Ω,Σ,μ;X)), ϱ_{N,μ})$ into subsets of a modular space $(M(L(Ω,Σ,μ;Y)),ϱ_{M,μ})$, then $N_F$ is automatically modular bounded, i.e. for each set K ⊂ N(L(Ω,Σ,μ;X)) such that $r_K = sup{ϱ_{N,μ}(x) : x ∈ K} < ∞$ we have $sup{ϱ_{M,μ}(y): y ∈ N_F(K)} < ∞$.
LA - eng
KW - Nemytskiĭ set-valued operators; superposition measurable set-valued operators; automatic boundedness; modular spaces; separable Fréchet spaces; sup-measurable multifunction; superposition operator; bounded on bounded sets
UR - http://eudml.org/doc/216160
ER -
References
top- [1] J. Appell, Nguyen Hong Tai and P. P. Zabrejko [P. P. Zabreǐko], Multivalued superposition operators in ideal spaces of vector functions. I, II, Indag. Math. (N.S.) 2 (1991), 385-395, 397-409. Zbl0748.47050
- [2] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
- [3] M. C. Joshi and R. K. Bose, Some Topics in Nonlinear Functional Analysis, Halsted Press, New York, 1985. Zbl0596.47038
- [4] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, 1983.
- [5] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49-65. Zbl0086.08901
- [6] J. Musielak and W. Orlicz, Some remarks on modular spaces, Bull. Acad. Polon. Sci. 7 (1959), 661-668. Zbl0099.09202
- [7] H. Nakano, Modulared linear spaces, J. Fac. Sci. Univ. Tokyo Sect. I 6 (1950), 85-131. Zbl0042.35903
- [8] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo, 1950. Zbl0041.23401
- [9] H. Nakano, Topology and Linear Topological Spaces, Maruzen, Tokyo, 1951.
- [10] V. Niemytzki [V. Nemytskiĭ], Sur les équations intégrales non linéaires, C. R. Acad. Sci. Paris 196 (1933), 836-838. Zbl0006.20901
- [11] V. Niemytzki [V. Nemytskiĭ], Théorèmes d'existence et d'unicité des solutions de quelques équations intégrales non-linéaires, Mat. Sb. 41 (1934), 421-438. Zbl0011.02603
- [12] T. Pruszko, Topological degree methods in multi-valued boundary value problems, Nonlinear Anal. 5 (1981), 959-973. Zbl0478.34017
- [13] S. Rolewicz, Metric Linear Spaces, Reidel and PWN, 1985.
- [14] W. Song, Multivalued superposition operators in , preprint.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.