On automatic boundedness of Nemytskiĭ set-valued operators
Studia Mathematica (1995)
- Volume: 113, Issue: 1, page 65-72
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. Appell, Nguyen Hong Tai and P. P. Zabrejko [P. P. Zabreǐko], Multivalued superposition operators in ideal spaces of vector functions. I, II, Indag. Math. (N.S.) 2 (1991), 385-395, 397-409. Zbl0748.47050
- [2] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
- [3] M. C. Joshi and R. K. Bose, Some Topics in Nonlinear Functional Analysis, Halsted Press, New York, 1985. Zbl0596.47038
- [4] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, 1983.
- [5] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49-65. Zbl0086.08901
- [6] J. Musielak and W. Orlicz, Some remarks on modular spaces, Bull. Acad. Polon. Sci. 7 (1959), 661-668. Zbl0099.09202
- [7] H. Nakano, Modulared linear spaces, J. Fac. Sci. Univ. Tokyo Sect. I 6 (1950), 85-131. Zbl0042.35903
- [8] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo, 1950. Zbl0041.23401
- [9] H. Nakano, Topology and Linear Topological Spaces, Maruzen, Tokyo, 1951.
- [10] V. Niemytzki [V. Nemytskiĭ], Sur les équations intégrales non linéaires, C. R. Acad. Sci. Paris 196 (1933), 836-838. Zbl0006.20901
- [11] V. Niemytzki [V. Nemytskiĭ], Théorèmes d'existence et d'unicité des solutions de quelques équations intégrales non-linéaires, Mat. Sb. 41 (1934), 421-438. Zbl0011.02603
- [12] T. Pruszko, Topological degree methods in multi-valued boundary value problems, Nonlinear Anal. 5 (1981), 959-973. Zbl0478.34017
- [13] S. Rolewicz, Metric Linear Spaces, Reidel and PWN, 1985.
- [14] W. Song, Multivalued superposition operators in , preprint.