On automatic boundedness of Nemytskiĭ set-valued operators

S. Rolewicz; Wen Song

Studia Mathematica (1995)

  • Volume: 113, Issue: 1, page 65-72
  • ISSN: 0039-3223

Abstract

top
Let X, Y be two separable F-spaces. Let (Ω,Σ,μ) be a measure space with μ complete, non-atomic and σ-finite. Let N F be the Nemytskiĭ set-valued operator induced by a sup-measurable set-valued function F : Ω × X 2 Y . It is shown that if N F maps a modular space ( N ( L ( Ω , Σ , μ ; X ) ) , ϱ N , μ ) into subsets of a modular space ( M ( L ( Ω , Σ , μ ; Y ) ) , ϱ M , μ ) , then N F is automatically modular bounded, i.e. for each set K ⊂ N(L(Ω,Σ,μ;X)) such that r K = s u p ϱ N , μ ( x ) : x K < we have s u p ϱ M , μ ( y ) : y N F ( K ) < .

How to cite

top

Rolewicz, S., and Song, Wen. "On automatic boundedness of Nemytskiĭ set-valued operators." Studia Mathematica 113.1 (1995): 65-72. <http://eudml.org/doc/216160>.

@article{Rolewicz1995,
abstract = {Let X, Y be two separable F-spaces. Let (Ω,Σ,μ) be a measure space with μ complete, non-atomic and σ-finite. Let $N_F$ be the Nemytskiĭ set-valued operator induced by a sup-measurable set-valued function $F:Ω × X → 2^\{Y\}$. It is shown that if $N_F$ maps a modular space $(N(L(Ω,Σ,μ;X)), ϱ_\{N,μ\})$ into subsets of a modular space $(M(L(Ω,Σ,μ;Y)),ϱ_\{M,μ\})$, then $N_F$ is automatically modular bounded, i.e. for each set K ⊂ N(L(Ω,Σ,μ;X)) such that $r_K = sup\{ϱ_\{N,μ\}(x) : x ∈ K\} < ∞$ we have $sup\{ϱ_\{M,μ\}(y): y ∈ N_F(K)\} < ∞$.},
author = {Rolewicz, S., Song, Wen},
journal = {Studia Mathematica},
keywords = {Nemytskiĭ set-valued operators; superposition measurable set-valued operators; automatic boundedness; modular spaces; separable Fréchet spaces; sup-measurable multifunction; superposition operator; bounded on bounded sets},
language = {eng},
number = {1},
pages = {65-72},
title = {On automatic boundedness of Nemytskiĭ set-valued operators},
url = {http://eudml.org/doc/216160},
volume = {113},
year = {1995},
}

TY - JOUR
AU - Rolewicz, S.
AU - Song, Wen
TI - On automatic boundedness of Nemytskiĭ set-valued operators
JO - Studia Mathematica
PY - 1995
VL - 113
IS - 1
SP - 65
EP - 72
AB - Let X, Y be two separable F-spaces. Let (Ω,Σ,μ) be a measure space with μ complete, non-atomic and σ-finite. Let $N_F$ be the Nemytskiĭ set-valued operator induced by a sup-measurable set-valued function $F:Ω × X → 2^{Y}$. It is shown that if $N_F$ maps a modular space $(N(L(Ω,Σ,μ;X)), ϱ_{N,μ})$ into subsets of a modular space $(M(L(Ω,Σ,μ;Y)),ϱ_{M,μ})$, then $N_F$ is automatically modular bounded, i.e. for each set K ⊂ N(L(Ω,Σ,μ;X)) such that $r_K = sup{ϱ_{N,μ}(x) : x ∈ K} < ∞$ we have $sup{ϱ_{M,μ}(y): y ∈ N_F(K)} < ∞$.
LA - eng
KW - Nemytskiĭ set-valued operators; superposition measurable set-valued operators; automatic boundedness; modular spaces; separable Fréchet spaces; sup-measurable multifunction; superposition operator; bounded on bounded sets
UR - http://eudml.org/doc/216160
ER -

References

top
  1. [1] J. Appell, Nguyen Hong Tai and P. P. Zabrejko [P. P. Zabreǐko], Multivalued superposition operators in ideal spaces of vector functions. I, II, Indag. Math. (N.S.) 2 (1991), 385-395, 397-409. Zbl0748.47050
  2. [2] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990. 
  3. [3] M. C. Joshi and R. K. Bose, Some Topics in Nonlinear Functional Analysis, Halsted Press, New York, 1985. Zbl0596.47038
  4. [4] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, 1983. 
  5. [5] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49-65. Zbl0086.08901
  6. [6] J. Musielak and W. Orlicz, Some remarks on modular spaces, Bull. Acad. Polon. Sci. 7 (1959), 661-668. Zbl0099.09202
  7. [7] H. Nakano, Modulared linear spaces, J. Fac. Sci. Univ. Tokyo Sect. I 6 (1950), 85-131. Zbl0042.35903
  8. [8] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo, 1950. Zbl0041.23401
  9. [9] H. Nakano, Topology and Linear Topological Spaces, Maruzen, Tokyo, 1951. 
  10. [10] V. Niemytzki [V. Nemytskiĭ], Sur les équations intégrales non linéaires, C. R. Acad. Sci. Paris 196 (1933), 836-838. Zbl0006.20901
  11. [11] V. Niemytzki [V. Nemytskiĭ], Théorèmes d'existence et d'unicité des solutions de quelques équations intégrales non-linéaires, Mat. Sb. 41 (1934), 421-438. Zbl0011.02603
  12. [12] T. Pruszko, Topological degree methods in multi-valued boundary value problems, Nonlinear Anal. 5 (1981), 959-973. Zbl0478.34017
  13. [13] S. Rolewicz, Metric Linear Spaces, Reidel and PWN, 1985. 
  14. [14] W. Song, Multivalued superposition operators in L p ( Ω , X ) , preprint. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.