The stability radius of an operator of Saphar type
Studia Mathematica (1995)
- Volume: 113, Issue: 2, page 169-175
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topSchmoeger, Christoph. "The stability radius of an operator of Saphar type." Studia Mathematica 113.2 (1995): 169-175. <http://eudml.org/doc/216167>.
@article{Schmoeger1995,
abstract = {A bounded linear operator T on a complex Banach space X is called an operator of Saphar type if its kernel is contained in its generalized range $⋂_\{n=1\}^\{∞\} T^n(X)$ and T is relatively regular. For T of Saphar type we determine the supremum of all positive numbers δ such that T - λI is of Saphar type for |λ| < δ.},
author = {Schmoeger, Christoph},
journal = {Studia Mathematica},
keywords = {operator of Saphar type; kernel},
language = {eng},
number = {2},
pages = {169-175},
title = {The stability radius of an operator of Saphar type},
url = {http://eudml.org/doc/216167},
volume = {113},
year = {1995},
}
TY - JOUR
AU - Schmoeger, Christoph
TI - The stability radius of an operator of Saphar type
JO - Studia Mathematica
PY - 1995
VL - 113
IS - 2
SP - 169
EP - 175
AB - A bounded linear operator T on a complex Banach space X is called an operator of Saphar type if its kernel is contained in its generalized range $⋂_{n=1}^{∞} T^n(X)$ and T is relatively regular. For T of Saphar type we determine the supremum of all positive numbers δ such that T - λI is of Saphar type for |λ| < δ.
LA - eng
KW - operator of Saphar type; kernel
UR - http://eudml.org/doc/216167
ER -
References
top- [1] H. Bart and D. C. Lay, The stability radius of a bundle of closed linear operators, Studia Math. 66 (1980), 307-320. Zbl0435.47022
- [2] S. R. Caradus, Generalized Inverses and Operator Theory, Queen's Papers in Pure and Appl. Math. 50, Queen's Univ., 1978.
- [3] K. H. Förster, Über die Invarianz einiger Räume, die zum Operator T-λ A gehören, Arch. Math. (Basel) 17 (1966), 56-64. Zbl0127.07903
- [4] K. H. Förster and M. A. Kaashoek, The asymptotic behaviour of the reduced minimum modulus of a Fredholm operator, Proc. Amer. Math. Soc. 49 (1975), 123-131. Zbl0272.47020
- [5] S. Ivanov, On holomorphic relative inverses of operator-valued functions, Pacific J. Math. 78 (1978), 345-358. Zbl0383.47013
- [6] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322. Zbl0090.09003
- [7] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), 159-175. Zbl0657.47038
- [8] M. Mbekhta, Résolvant généralisé et théorème spectrale, J. Operator Theory 21 (1989), 69-105. Zbl0694.47002
- [9] P. Saphar, Contribution à l'étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363-384. Zbl0139.08502
- [10] C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489.
- [11] C. Schmoeger, The punctured neighbourhood theorem in Banach algebras, Proc. Roy. Irish Acad. 91A (1991), 205-218. Zbl0793.46027
- [12] C. Schmoeger, Relatively regular operators and a spectral mapping theorem, J. Math. Anal. Appl. 175 (1993), 315-320. Zbl0781.47009
- [13] M. A. Shubin, On holomorphic families of subspaces of a Banach space, Mat. Issled. 5 (1970), 153-165 (in Russian); English transl.: Integral Equations Operator Theory 2 (1979), 407-420.
- [14] J. Zemánek, The stability radius of a semi-Fredholm operator, Integral Equations Operator Theory 8 (1985), 137-143. Zbl0561.47009
- [15] J. Zemánek, The reduced minimum modulus and the spectrum, ibid. 12 (1989), 449-454. Zbl0674.47002
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.