The stability radius of an operator of Saphar type

Christoph Schmoeger

Studia Mathematica (1995)

  • Volume: 113, Issue: 2, page 169-175
  • ISSN: 0039-3223

Abstract

top
A bounded linear operator T on a complex Banach space X is called an operator of Saphar type if its kernel is contained in its generalized range n = 1 T n ( X ) and T is relatively regular. For T of Saphar type we determine the supremum of all positive numbers δ such that T - λI is of Saphar type for |λ| < δ.

How to cite

top

Schmoeger, Christoph. "The stability radius of an operator of Saphar type." Studia Mathematica 113.2 (1995): 169-175. <http://eudml.org/doc/216167>.

@article{Schmoeger1995,
abstract = {A bounded linear operator T on a complex Banach space X is called an operator of Saphar type if its kernel is contained in its generalized range $⋂_\{n=1\}^\{∞\} T^n(X)$ and T is relatively regular. For T of Saphar type we determine the supremum of all positive numbers δ such that T - λI is of Saphar type for |λ| < δ.},
author = {Schmoeger, Christoph},
journal = {Studia Mathematica},
keywords = {operator of Saphar type; kernel},
language = {eng},
number = {2},
pages = {169-175},
title = {The stability radius of an operator of Saphar type},
url = {http://eudml.org/doc/216167},
volume = {113},
year = {1995},
}

TY - JOUR
AU - Schmoeger, Christoph
TI - The stability radius of an operator of Saphar type
JO - Studia Mathematica
PY - 1995
VL - 113
IS - 2
SP - 169
EP - 175
AB - A bounded linear operator T on a complex Banach space X is called an operator of Saphar type if its kernel is contained in its generalized range $⋂_{n=1}^{∞} T^n(X)$ and T is relatively regular. For T of Saphar type we determine the supremum of all positive numbers δ such that T - λI is of Saphar type for |λ| < δ.
LA - eng
KW - operator of Saphar type; kernel
UR - http://eudml.org/doc/216167
ER -

References

top
  1. [1] H. Bart and D. C. Lay, The stability radius of a bundle of closed linear operators, Studia Math. 66 (1980), 307-320. Zbl0435.47022
  2. [2] S. R. Caradus, Generalized Inverses and Operator Theory, Queen's Papers in Pure and Appl. Math. 50, Queen's Univ., 1978. 
  3. [3] K. H. Förster, Über die Invarianz einiger Räume, die zum Operator T-λ A gehören, Arch. Math. (Basel) 17 (1966), 56-64. Zbl0127.07903
  4. [4] K. H. Förster and M. A. Kaashoek, The asymptotic behaviour of the reduced minimum modulus of a Fredholm operator, Proc. Amer. Math. Soc. 49 (1975), 123-131. Zbl0272.47020
  5. [5] S. Ivanov, On holomorphic relative inverses of operator-valued functions, Pacific J. Math. 78 (1978), 345-358. Zbl0383.47013
  6. [6] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322. Zbl0090.09003
  7. [7] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), 159-175. Zbl0657.47038
  8. [8] M. Mbekhta, Résolvant généralisé et théorème spectrale, J. Operator Theory 21 (1989), 69-105. Zbl0694.47002
  9. [9] P. Saphar, Contribution à l'étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363-384. Zbl0139.08502
  10. [10] C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489. 
  11. [11] C. Schmoeger, The punctured neighbourhood theorem in Banach algebras, Proc. Roy. Irish Acad. 91A (1991), 205-218. Zbl0793.46027
  12. [12] C. Schmoeger, Relatively regular operators and a spectral mapping theorem, J. Math. Anal. Appl. 175 (1993), 315-320. Zbl0781.47009
  13. [13] M. A. Shubin, On holomorphic families of subspaces of a Banach space, Mat. Issled. 5 (1970), 153-165 (in Russian); English transl.: Integral Equations Operator Theory 2 (1979), 407-420. 
  14. [14] J. Zemánek, The stability radius of a semi-Fredholm operator, Integral Equations Operator Theory 8 (1985), 137-143. Zbl0561.47009
  15. [15] J. Zemánek, The reduced minimum modulus and the spectrum, ibid. 12 (1989), 449-454. Zbl0674.47002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.